以△ABC的三邊為邊在BC的同一側(cè)分別作三個(gè)等邊三角形,即△ABD、△BCE、△ACF.
(1)請(qǐng)猜想四邊形ADEF是什么特殊四邊形?并說(shuō)明理由.
(2)當(dāng)△ABC滿足條件___________時(shí),四邊形ADEF為矩形;
(3) 當(dāng)△ABC滿足條件___________時(shí),四邊形ADEF不存在.
(1) 四邊形ADEF是平行四邊形,證明見(jiàn)解析;
(2)∠BAC=150°;
(3)∠BAC=60°.

試題分析:(1)可先證明△ABC≌△DBE,可得DE=AC,又有AC=AF,可得DE=AF,同理可得AD=EF,根據(jù)兩組對(duì)邊分別相等的四邊形是平行四邊形,可證四邊形ADEF是平行四邊形;
(2)如四邊形ADEF是矩形,則∠DAF=90°,又有∠BAD=∠FAC=60°,可得∠BAC=150°,故∠BAC=150°時(shí),四邊形ADEF是矩形;
(3)根據(jù)∠BAC=60°時(shí),∠DAF=180°,此時(shí)D、A、F三點(diǎn)在同一條直線上,以A,D,E,F(xiàn)為頂點(diǎn)的四邊形就不存在.
試題解析:(1)四邊形ADEF是平行四邊形;
∵△ABD,△BCE都是等邊三角形,
∴∠DBE=∠ABC=60°﹣∠ABE,AB=BD,BC=BE.
在△ABC和△DBE中,
,
∴△ABC≌△DBE(SAS).
∴DE=AC.
又∵AC=AF,
∴DE=AF.
同理可得EF=AD.
∴四邊形ADEF是平行四邊形;
(2)∵四邊形ADEF是平行四邊形,
∴當(dāng)∠DAF=90°時(shí),四邊形ADEF是矩形,
∴∠FAD=90°.
∴∠BAC=360°﹣∠DAF﹣∠DAB﹣∠FAC=360°﹣90°﹣60°﹣60°=150°.
則當(dāng)∠BAC=150°時(shí),四邊形ADEF是矩形;
(3)當(dāng)∠BAC=60°時(shí),∠DAF=180°,
此時(shí)D、A、F三點(diǎn)在同一條直線上,以A,D,E,F(xiàn)為頂點(diǎn)的四邊形就不存在.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖, AB是⊙O的直徑,AM和BN是⊙O的兩條切線,點(diǎn)D是AM上一點(diǎn),聯(lián)結(jié)OD , 作BE∥OD交⊙O于點(diǎn)E, 聯(lián)結(jié)DE并延長(zhǎng)交BN于點(diǎn)C.
(1)求證:DC是⊙O的切線;
(2)若AD=l,BC=4,求直徑AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,△ABC和△ADC有公共邊AC,E是公共邊上一點(diǎn).
(1)已知:AB=AD,BE=DE. 求證:△ABC≌△ADC.
(2)已知:∠1=∠2,∠3=∠4.求證:∠5=∠6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

閱讀下面材料:
小明遇到這樣一個(gè)問(wèn)題: 如圖1,五個(gè)正方形的邊長(zhǎng)都為1,將這五個(gè)正方形分割為四部分,再拼接為一個(gè)大正方形.
小明研究發(fā)現(xiàn):如圖2,拼接的大正方形的邊長(zhǎng)為, “日”字形的對(duì)角線長(zhǎng)都為,五個(gè)正方形被兩條互相垂直的線段AB,CD分割為四部分,將這四部分圖形分別標(biāo)號(hào),以CD為一邊畫(huà)大正方形,把這四部分圖形分別移入正方形內(nèi),就解決問(wèn)題.
請(qǐng)你參考小明的畫(huà)法,完成下列問(wèn)題:
(1)如圖3,邊長(zhǎng)分別為a,b的兩個(gè)正方形被兩條互相垂直的線段AB,CD分割為四部分圖形,現(xiàn)將這四部分圖形拼接成一個(gè)大正方形,請(qǐng)畫(huà)出拼接示意圖
(2)如圖4,一個(gè)八角形紙板有個(gè)個(gè)角都是直角,所有的邊都相等,將這個(gè)紙板沿虛線分割為八部分,再拼接成一個(gè)正方形,如圖5所示,畫(huà)出拼接示意圖;若拼接后的正方形的面積為,則八角形紙板的邊長(zhǎng)為         

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABC中,點(diǎn)D、E分別是邊BC、AC的中點(diǎn),過(guò)點(diǎn)A作AF∥BC交DE的延長(zhǎng)線于F點(diǎn),連接CF.
(1)求證:四邊形ABDF是平行四邊形;
(2)若∠CAF=45°,BC=4,CF=,求△CAF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

類(lèi)比梯形的定義,我們定義:有一組對(duì)角相等而另一組對(duì)角不相等的凸四邊形叫做“等對(duì)角四邊形”.
(1)已知:如圖1,四邊形ABCD是“等對(duì)角四邊形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度數(shù).
(2)在探究“等對(duì)角四邊形”性質(zhì)時(shí):
①小紅畫(huà)了一個(gè)“等對(duì)角四邊形”ABCD(如圖2),其中∠ABC=∠ADC,AB=AD,此時(shí)她發(fā)現(xiàn)CB=CD成立.請(qǐng)你證明此結(jié)論;
②由此小紅猜想:“對(duì)于任意‘等對(duì)角四邊形’,當(dāng)一組鄰邊相等時(shí),另一組鄰邊也相等”.你認(rèn)為她的猜想正確嗎?若正確,請(qǐng)證明;若不正確,請(qǐng)舉出反例.
(3)已知:在“等對(duì)角四邊形"ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求對(duì)角線AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知,正邊形的一個(gè)內(nèi)角為,則邊數(shù)的值是               .

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下面關(guān)于直角三角形的全等的判定,不正確的是(      ).
A.有一銳角和一邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等
B.有兩邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等
C.有兩角對(duì)應(yīng)相等,且有一條公共邊的兩個(gè)直角三角形全等
D.有兩角和一邊對(duì)應(yīng)相等的兩個(gè)直角三角形全等

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,為測(cè)量池塘邊上兩點(diǎn)A、B之間的距離,小明在池塘的一側(cè)選取一點(diǎn)O,測(cè)得OA、OB的中點(diǎn)分別是點(diǎn)D、E,且DE=14米,則A、B間的距離是(  ).

A.18米         B.24米         C.28米              D.30米

查看答案和解析>>

同步練習(xí)冊(cè)答案