精英家教網 > 初中數學 > 題目詳情
如圖,△ABC的內切圓⊙O與BC,CA,AB分別相切于點D,E,F,且AB=9cm,BC=14cm,CA=13cm,則AF的長為( 。
分析:設AF=acm,根據切線長定理得出AF=AE,CE=CD,BF=BD,求出BD=BF=(9-a)cm,CD=CE=(13-a)cm,根據CD+BD=BC,代入求出a即可.
解答:解:設AF=acm,
∵△ABC的內切圓⊙O與BC,CA,AB分別相切于點D,E,F,
∴AF=AE,CE=CD,BF=BD,
∵AB=9cm,BC=14cm,CA=13cm,
∴BD=BF=(9-a)cm,CD=CE=(13-a)cm,
∵BD+CD=BC=14cm,
∴(9-a)+(13-a)=14,
解得:a=4,
即AF=4cm.
故選B.
點評:本題考查了三角形的內切圓與內心和切線長定理,關鍵是推出AF=AE,CE=CD,BF=BD,用了方程思想.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

5、已知:如圖,△ABC內接于⊙O,AE切⊙O于點A,BD∥AE交AC的延長線于點D,求證:AB2=AC•AD.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知:如圖,△ABC內接于⊙O1,以AC為直徑的⊙O2交BC于點D,AE切⊙O1于點A,交⊙O2精英家教網點E,連接AD、CE,若AC=7,AD=3
5
,tanB=
5
2

求:(1)BC的長;
(2)CE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網已知如圖,△ABC內切⊙O于D、E、F三點,內切圓⊙O的半徑為1,∠C=60°,AB=5,則△ABC的周長為( 。
A、12
B、14
C、10+2
3
D、10+
3

查看答案和解析>>

科目:初中數學 來源:解題升級  解題快速反應一典通  九年級級數學 題型:044

己知:如圖,⊙O與內切于點B,BC是⊙O的直徑,BC=6,BF為的直徑,BF=4,⊙O的弦BA交于點D,連接DF、AC、CD.(1)求證:DF∥AC;(2)當∠ABC等于多少度時,CD與相切?并證明你的結論.(3)在(2)的前提下,連接FA交CD于點E,求AF、EF的長.

查看答案和解析>>

科目:初中數學 來源:同步題 題型:解答題

已知如圖,⊙O的內接△ABC,AE切⊙O于A點,過C作AE的平行線交AB于D點.   
(1)求證:AC2=AB·AD.  
(2)若∠B=60°,⊙O的直徑為6,求S

查看答案和解析>>

同步練習冊答案