【題目】如圖,在中,,,點、分別為、中點,,,若,求的長.
【答案】EG=5cm.
【解析】
連接AE、AG,根據(jù)線段垂直平分線上的點到線段兩端點的距離相等可得EB=EA,再根據(jù)等腰三角形兩底角相等求出∠B,根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和求出∠AEG=60°,同理求出∠AGE=60°,從而判斷出,△AEG為等邊三角形,再根據(jù)等邊三角形三邊都相等列式求解即可.
如圖,連接AE、AG,
∵D為AB中點,ED⊥AB,
∴EB=EA,
∴△ABE為等腰三角形,
又∵∠B==30°,
∴∠BAE=30°,
∴∠AEG=60°,
同理可證:∠AGE=60°,
∴△AEG為等邊三角形,
∴AE=EG=AG,
又∵AE=BE,AG=GC,
∴BE=EG=GC,
又BE+EG+GC=BC=15(cm),
∴EG=5(cm).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c與x軸交于A、B(點A在點B的左側(cè)),與y軸交于點C(0,﹣3),對稱軸是直線x=1,直線BC與拋物線的對稱軸交于點D.
(1)求拋物線的函數(shù)解析式;
(2)求直線BC的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,A、B兩個頂點在軸的上方,點C的坐標是(1,0).以點C為位似中心,在x軸的下方作△ABC的位似圖形,并把△ABC的邊長放大到原來的2倍,設點B的對應點B′的橫坐標是a,則點B的橫坐標是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關于x的一元二次方程x2+(k﹣5)x+1﹣k=0,其中k為常數(shù).
(1)求證:無論k為何值,方程總有兩個不相等實數(shù)根;
(2)若原方程的一根大于3,另一根小于3,求k的最大整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】港珠澳大橋是世界最長的跨海大橋,連接香港大嶼山、澳門半島和廣東省珠海市,其中珠海站到香港站全長約55千米,2018年10月24日上午9時正式通車.一輛觀光巴士自珠海站出發(fā),25分鐘后,一輛小汽車從同一地點出發(fā),結(jié)果同時到達香港站.已知小汽車的速度是觀光巴士的1.6倍,求觀光巴士的速度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小張騎自行車勻速從甲地到乙地,在途中因故停留了一段時間后,仍按原速騎行,小李騎摩托車比小張晚出發(fā)一段時間,以800米/分的速度勻速從乙地到甲地,兩人距離乙地的路程y(米)與小張出發(fā)后的時間x(分)之間的函數(shù)圖象如圖所示.
(1)求小張騎自行車的速度;
(2)求小張停留后再出發(fā)時y與x之間的函數(shù)表達式;
(3)求小張與小李相遇時x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把等邊△ABC沿DE翻折,使點A落在BC上的F處,給出以下結(jié)論:
①∠BDF=∠EFC;
②BDCE=BFCF;
③S△BDF+S△EFC=;
④若BF:CF=1:2,則AD:AE=4:5.其中正確的結(jié)論有_____.(填序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com