問(wèn)題情境:將一副直角三角板(Rt△ABC和Rt△DEF)按圖1所示的方式擺放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中點(diǎn),點(diǎn)D與點(diǎn)O重合,DF⊥AC于點(diǎn)M,DE⊥BC于點(diǎn)N,試判斷線(xiàn)段OM與ON的數(shù)量關(guān)系,并說(shuō)明理由.
探究展示:小宇同學(xué)展示出如下正確的解法:
解:OM=ON,證明如下:
連接CO,則CO是AB邊上中線(xiàn),
∵CA=CB,∴CO是∠ACB的角平分線(xiàn).(依據(jù)1)
∵OM⊥AC,ON⊥BC,∴OM=ON.(依據(jù)2)
反思交流:
(1)上述證明過(guò)程中的“依據(jù)1”和“依據(jù)2”分別是指:
依據(jù)1:                                                                                   
依據(jù)2:                                     
(2)你有與小宇不同的思考方法嗎?請(qǐng)寫(xiě)出你的證明過(guò)程.
拓展延伸:
(3)將圖1中的Rt△DEF沿著射線(xiàn)BA的方向平移至如圖2所示的位置,使點(diǎn)D落在BA的延長(zhǎng)線(xiàn)上,F(xiàn)D的延長(zhǎng)線(xiàn)與CA的延長(zhǎng)線(xiàn)垂直相交于點(diǎn)M,BC的延長(zhǎng)線(xiàn)與DE垂直相交于點(diǎn)N,連接OM、ON,試判斷線(xiàn)段OM、ON的數(shù)量關(guān)系與位置關(guān)系,并寫(xiě)出證明過(guò)程.

(1)解:等腰三角形三線(xiàn)合一(或等腰三角形頂角的平分線(xiàn)、底邊上的中線(xiàn)、底邊上的高互相重合);角平分線(xiàn)上的點(diǎn)到角的兩邊距離相等。
(2)證明:∵CA=CB,∴∠A=∠B。
∵O是AB的中點(diǎn),∴OA=OB。
∵DF⊥AC,DE⊥BC,∴∠AMO=∠BNO=90°。
∵在△OMA和△ONB中,∠A=∠B,OA=OB,∠AMO=∠BNO,
∴△OMA≌△ONB(AAS)!郞M=ON。
(3)解:OM=ON,OM⊥ON。理由如下:

連接CO,則CO是AB邊上的中線(xiàn)。
∵∠ACB=90°,∴OC=AB=OB。
又∵CA=CB,
∴∠CAB=∠B=45,∠1=∠2=45°,∠AOC=∠BOC=90°!唷2=∠B。
∵BN⊥DE,∴∠BND=90°。
又∵∠B=45°,∴∠3=45°。∴∠3=∠B!郉N=NB。
∵∠ACB=90°,∴∠NCM=90°。
又∵BN⊥DE,∴∠DNC=90°!嗨倪呅蜠MCN是矩形!郉N=MC!郙C=NB。
∴△MOC≌△NOB(SAS)!郞M=ON,∠MOC=∠NOB。
∴∠MOC﹣∠CON=∠NOB﹣∠CON,即∠MON=∠BOC=90°。
∴OM⊥ON。

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•山西)問(wèn)題情境:將一副直角三角板(Rt△ABC和Rt△DEF)按圖1所示的方式擺放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中點(diǎn),點(diǎn)D與點(diǎn)O重合,DF⊥AC于點(diǎn)M,DE⊥BC于點(diǎn)N,試判斷線(xiàn)段OM與ON的數(shù)量關(guān)系,并說(shuō)明理由.
探究展示:小宇同學(xué)展示出如下正確的解法:
解:OM=ON,證明如下:
連接CO,則CO是AB邊上中線(xiàn),
∵CA=CB,∴CO是∠ACB的角平分線(xiàn).(依據(jù)1)
∵OM⊥AC,ON⊥BC,∴OM=ON.(依據(jù)2)
反思交流:
(1)上述證明過(guò)程中的“依據(jù)1”和“依據(jù)2”分別是指:
依據(jù)1:
等腰三角形的三線(xiàn)合一(等腰三角形頂角的平分線(xiàn)、底邊上的中線(xiàn)、底邊上的高互相重合)
等腰三角形的三線(xiàn)合一(等腰三角形頂角的平分線(xiàn)、底邊上的中線(xiàn)、底邊上的高互相重合)

依據(jù)2:
角平分線(xiàn)上的點(diǎn)到角的兩邊的距離相等
角平分線(xiàn)上的點(diǎn)到角的兩邊的距離相等

(2)你有與小宇不同的思考方法嗎?請(qǐng)寫(xiě)出你的證明過(guò)程.
拓展延伸:
(3)將圖1中的Rt△DEF沿著射線(xiàn)BA的方向平移至如圖2所示的位置,使點(diǎn)D落在BA的延長(zhǎng)線(xiàn)上,F(xiàn)D的延長(zhǎng)線(xiàn)與CA的延長(zhǎng)線(xiàn)垂直相交于點(diǎn)M,BC的延長(zhǎng)線(xiàn)與DE垂直相交于點(diǎn)N,連接OM、ON,試判斷線(xiàn)段OM、ON的數(shù)量關(guān)系與位置關(guān)系,并寫(xiě)出證明過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:山西省中考真題 題型:解答題

問(wèn)題情境:將一副直角三角板(Rt△ABC和Rt△DEF)按圖1所示的方式擺放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中點(diǎn),點(diǎn)D與點(diǎn)O重合,DF⊥AC于點(diǎn)M,DE⊥BC于點(diǎn)N,試判斷線(xiàn)段OM與ON的數(shù)量關(guān)系,并說(shuō)明理由
探究展示:小宇同學(xué)展示出如下正確的解法:
解:OM=ON,
證明如下:連接CO,則CO是AB邊上中線(xiàn),
∵CA=CB,
∴CO是∠ACB的角平分線(xiàn)(依據(jù)1)
∵OM⊥AC,ON⊥BC,
∴OM=ON(依據(jù)2)反思交流:
(1)上述證明過(guò)程中的“依據(jù)1”和“依據(jù)2”分別是指:
依據(jù)1:                                                                                    
依據(jù)2:                                                                                     
(2)你有與小宇不同的思考方法嗎?請(qǐng)寫(xiě)出你的證明過(guò)程.
拓展延伸:
(3)將圖1中的Rt△DEF沿著射線(xiàn)BA的方向平移至如圖2所示的位置,使點(diǎn)D落在BA的延長(zhǎng)線(xiàn)上,F(xiàn)D的延長(zhǎng)線(xiàn)與CA的延長(zhǎng)線(xiàn)垂直相交于點(diǎn)M,BC的延長(zhǎng)線(xiàn)與DE垂直相交于點(diǎn)N,連接OM、ON,試判斷線(xiàn)段OM、ON的數(shù)量關(guān)系與位置關(guān)系,并寫(xiě)出證明過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省無(wú)錫市南長(zhǎng)區(qū)九年級(jí)(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

問(wèn)題情境:將一副直角三角板(Rt△ABC和Rt△DEF)按圖1所示的方式擺放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中點(diǎn),點(diǎn)D與點(diǎn)O重合,DF⊥AC于點(diǎn)M,DE⊥BC于點(diǎn)N,試判斷線(xiàn)段OM與ON的數(shù)量關(guān)系,并說(shuō)明理由.
探究展示:小宇同學(xué)展示出如下正確的解法:
解:OM=ON,證明如下:
連接CO,則CO是AB邊上中線(xiàn),
∵CA=CB,∴CO是∠ACB的角平分線(xiàn).(依據(jù)1)
∵OM⊥AC,ON⊥BC,∴OM=ON.(依據(jù)2)
反思交流:
(1)上述證明過(guò)程中的“依據(jù)1”和“依據(jù)2”分別是指:
依據(jù)1:______
依據(jù)2:______
(2)你有與小宇不同的思考方法嗎?請(qǐng)寫(xiě)出你的證明過(guò)程.
拓展延伸:
(3)將圖1中的Rt△DEF沿著射線(xiàn)BA的方向平移至如圖2所示的位置,使點(diǎn)D落在BA的延長(zhǎng)線(xiàn)上,F(xiàn)D的延長(zhǎng)線(xiàn)與CA的延長(zhǎng)線(xiàn)垂直相交于點(diǎn)M,BC的延長(zhǎng)線(xiàn)與DE垂直相交于點(diǎn)N,連接OM、ON,試判斷線(xiàn)段OM、ON的數(shù)量關(guān)系與位置關(guān)系,并寫(xiě)出證明過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年湖北省恩施州巴東縣大支坪民族中學(xué)中考數(shù)學(xué)模擬試卷(二)(解析版) 題型:解答題

問(wèn)題情境:將一副直角三角板(Rt△ABC和Rt△DEF)按圖1所示的方式擺放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中點(diǎn),點(diǎn)D與點(diǎn)O重合,DF⊥AC于點(diǎn)M,DE⊥BC于點(diǎn)N,試判斷線(xiàn)段OM與ON的數(shù)量關(guān)系,并說(shuō)明理由.
探究展示:小宇同學(xué)展示出如下正確的解法:
解:OM=ON,證明如下:
連接CO,則CO是AB邊上中線(xiàn),
∵CA=CB,∴CO是∠ACB的角平分線(xiàn).(依據(jù)1)
∵OM⊥AC,ON⊥BC,∴OM=ON.(依據(jù)2)
反思交流:
(1)上述證明過(guò)程中的“依據(jù)1”和“依據(jù)2”分別是指:
依據(jù)1:______
依據(jù)2:______
(2)你有與小宇不同的思考方法嗎?請(qǐng)寫(xiě)出你的證明過(guò)程.
拓展延伸:
(3)將圖1中的Rt△DEF沿著射線(xiàn)BA的方向平移至如圖2所示的位置,使點(diǎn)D落在BA的延長(zhǎng)線(xiàn)上,F(xiàn)D的延長(zhǎng)線(xiàn)與CA的延長(zhǎng)線(xiàn)垂直相交于點(diǎn)M,BC的延長(zhǎng)線(xiàn)與DE垂直相交于點(diǎn)N,連接OM、ON,試判斷線(xiàn)段OM、ON的數(shù)量關(guān)系與位置關(guān)系,并寫(xiě)出證明過(guò)程.

查看答案和解析>>

同步練習(xí)冊(cè)答案