【題目】在Rt△ABC中,∠ABC=90°,∠BAC=30°,將△ABC繞點A順時針旋轉(zhuǎn)一定的角度得到△AED,點B、C的對應(yīng)點分別是E、D.
(1)如圖1,當點E恰好在AC上時,求∠CDE的度數(shù);
(2)如圖2,若=60°時,點F是邊AC中點,求證:四邊形BFDE是平行四邊形.
【答案】(1)15°;(2)證明見解析.
【解析】
(1)如圖1,利用旋轉(zhuǎn)的性質(zhì)得CA=DA,∠CAD=∠BAC=30°,∠DEA=∠ABC=90°,再根據(jù)等腰三角形的性質(zhì)求出∠ADC,從而計算出∠CDE的度數(shù);
(2)如圖2,利用直角三角形斜邊上的中線性質(zhì)得到BF=AC,利用含30度的直角三角形三邊的關(guān)系得到BC=AC,則BF=BC,再根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠BAE=∠CAD=60°,AB=AE,AC=AD ,DE=BC,從而得到DE=BF,△ACD和△BAE為等邊三角形,接著由△AFD≌△CBA得到DF=BA,然后根據(jù)平行四邊形的判定方法得到結(jié)論.
解:(1)如圖1,∵△ABC繞點A順時針旋轉(zhuǎn)α得到△AED,點E恰好在AC上,
∴CA=CD,∠CAD=∠BAC=30°,∠DEA=∠ABC=90°,
∵CA=DA,
∴∠ACD=∠ADC=(180°30°)=75°,∠ADE=90°-30°=60°,
∴∠CDE=75°60°=15°;
(2)證明:如圖2,
∵點F是邊AC中點,
∴BF=AC,
∵∠BAC=30°,
∴BC=AC,
∴BF=BC,
∵△ABC繞點A順時針旋轉(zhuǎn)60°得到△AED,
∴∠BAE=∠CAD=60°,AB=AE,AC=AD,DE=BC,
∴DE=BF,△ACD和△BAE為等邊三角形,
∴BE=AB,
∵點F為△ACD的邊AC的中點,
∴DF⊥AC,
易證得△AFD≌△CBA,
∴DF=BA,
∴DF=BE,
而BF=DE,
∴四邊形BEDF是平行四邊形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,為常數(shù))的圖象經(jīng)過點.
(1)求,滿足的關(guān)系式;
(2)設(shè)該函數(shù)圖象的頂點坐標是,當的值變化時,求關(guān)于的函數(shù)解析式;
(3)若該函數(shù)的圖象不經(jīng)過第三象限,當時,函數(shù)的最大值與最小值之差為16,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】黃石市在創(chuàng)建國家級文明衛(wèi)生城市中,綠化檔次不斷提升.某校計劃購進A,B兩種樹木共100棵進行校園綠化升級,經(jīng)市場調(diào)查:購買A種樹木2棵,B種樹木5棵,共需600元;購買A種樹木3棵,B種樹木1棵,共需380元.
(1)求A種,B種樹木每棵各多少元?
(2)因布局需要,購買A種樹木的數(shù)量不少于B種樹木數(shù)量的3倍.學(xué)校與中標公司簽訂的合同中規(guī)定:在市場價格不變的情況下(不考慮其他因素),實際付款總金額按市場價九折優(yōu)惠,請設(shè)計一種購買樹木的方案,使實際所花費用最省,并求出最省的費用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象交于點、點.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求的面積;
(3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,二次函數(shù)的圖像交坐標軸于A(-1,0),B(4,0),C(0,-4)三點,點P是直線BC下方拋物線上一動點.
(1)求這個二次函數(shù)的解析式;
(2)是否存在點P,使△POC是以OC為底邊的等腰三角形?若存在,求出P點坐標;若不存在,請說明理由;
(3)動點P運動到什么位置時,△PBC面積最大,求出此時P點坐標和△PBC的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為宣傳6月6日世界海洋日,某校九年級舉行了主題為“珍惜海洋資源,保護海洋生物多樣性”的知識競賽活動.為了解全年級500名學(xué)生此次競賽成績(百分制)的情況,隨機抽取了部分參賽學(xué)生的成績,整理并繪制出如下不完整的統(tǒng)計表(表1)和統(tǒng)計圖(如圖).請根據(jù)圖表信息解答以下問題:
(1)本次調(diào)查一共隨機抽取了 個參賽學(xué)生的成績;
(2)表1中 ;
(3)所抽取的參賽學(xué)生的成績的中位數(shù)落在的“組別”是 ;
(4)請你估計,該校九年級競賽成績達到80分以上(含80分)的學(xué)生約有 人.
表1 知識競賽成績分組統(tǒng)計表
組別 | 分數(shù)/分 | 頻數(shù) |
A | a | |
B | 10 | |
C | 14 | |
D | 18 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,∠BAD=120°,CE⊥AD,且CE=BC,連接BE交對角線AC于點F,則∠EFC=_____°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,我們將相同的兩塊含30°角的直角三角板Rt△DEF與Rt△ABC疊合,使DE在AB上,DE過點C,已知AC=DE=6.
(1)將圖1中的△DEF繞點D逆時針旋轉(zhuǎn)(DF與AB不重合),使邊DF、DE分別交AC、BC于點P、Q,如圖2.
①求證:△CQD∽△APD;②連接PQ,設(shè)AP=x,求面積S△PCQ關(guān)于x的函數(shù)關(guān)系式;
(2)將圖1中的△DEF向左平移(點A、D不重合),使邊FD、FE分別交AC、BC于點M、N設(shè)AM=t,如圖3.
①判斷△BEN是什么三角形?并用含t的代數(shù)式表示邊BE和BN;②連接MN,求面積S△MCN關(guān)于t的函數(shù)關(guān)系式;
(3)在旋轉(zhuǎn)△DEF的過程中,試探求AC上是否存在點P,使得S△PCQ等于平移所得S△MCN的最大值?說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,,分別是兩邊的中點,如果上的所有點都在△ABC的內(nèi)部或邊上,則稱為△ABC的中內(nèi)弧.例如,下圖中是△ABC的一條中內(nèi)。
(1)如圖,在Rt△ABC中,分別是的中點.畫出△ABC的最長的中內(nèi)弧,并直接寫出此時的長;
(2)在平面直角坐標系中,已知點,在△ABC中,分別是的中點.
①若,求△ABC的中內(nèi)弧所在圓的圓心的縱坐標的取值范圍;
②若在△ABC中存在一條中內(nèi)弧,使得所在圓的圓心P在△ABC的內(nèi)部或邊上,直接寫出t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com