【題目】如圖△ABC中,∠ACB=90°,AC=8,BC=6,點(diǎn)EAB中點(diǎn),將△CAE沿著直線CE翻折,得到△CDE,連接AD,則點(diǎn)E到線段AD的距離等于( )

A.2B.1.8C.1.5D.1.4

【答案】D

【解析】

延長(zhǎng)CEADF,連接BD,先判定ABC∽△CAF,即可得到CF=6.4,從而求得EF=CF-CE=1.4

解:如圖,延長(zhǎng)CEADF,連接BD,由折疊性質(zhì)可知,EFAD

∵∠ACB=90°,AC=8,BC=6,

AB=10

∵∠ACB=90°,CE為中線,

CE=AE=BE,

∴∠ACF=BAC,

又∵∠AFC=BCA=90°,

∴△ABC∽△CAF
,即,

CF=6.4,

EF=CF-CE=1.4,

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解市民獲取新聞的最主要途徑,某市記者開(kāi)展了一次抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如圖所示尚不完整的統(tǒng)計(jì)圖.

根據(jù)圖中信息解答下列問(wèn)題:

(1)這次接受調(diào)查的市民總?cè)藬?shù)是________;

(2)扇形統(tǒng)計(jì)圖中,電視所在扇形的圓心角的度數(shù)是________;

(3)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;

(4)若該市約有80萬(wàn)人,請(qǐng)你估計(jì)其中將電腦上網(wǎng)和手機(jī)上網(wǎng)作為獲取新聞的最主要途徑的總?cè)藬?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知A1,1、B3,5,要在x軸上找一點(diǎn)P,使得PAB的周長(zhǎng)最小,則點(diǎn)P的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】向陽(yáng)中學(xué)校園內(nèi)有一條林萌道叫勤學(xué)路,道路兩邊有如圖所示的路燈(在鉛垂面內(nèi)的示意圖),燈柱BC的高為10米,燈柱BC與燈桿AB的夾角為120°.路燈采用錐形燈罩,在地面上的照射區(qū)域DE的長(zhǎng)為13.3米,從D、E兩處測(cè)得路燈A的仰角分別為α45°,且tanα=6.求燈桿AB的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(0,3),B,0),AB =6,作∠DBO=ABO,點(diǎn)Hy軸上的點(diǎn),∠CAH=BAO,BDy軸于點(diǎn)E,直線DOAC于點(diǎn)C

(1)證明:△ABE為等邊三角形;

(2)若CDAB于點(diǎn)F,求線段CD的長(zhǎng);

(3)動(dòng)點(diǎn)PA出發(fā),沿AOB路線運(yùn)動(dòng),速度為1個(gè)單位長(zhǎng)度每秒,到B點(diǎn)處停止運(yùn)動(dòng);動(dòng)點(diǎn)QB出發(fā),沿BOA路線運(yùn)動(dòng),速度為2個(gè)單位長(zhǎng)度每秒,到A點(diǎn)處停止運(yùn)動(dòng).兩點(diǎn)同時(shí)開(kāi)始運(yùn)動(dòng),都要到達(dá)相應(yīng)的終點(diǎn)才能停止.在某時(shí)刻,作PMCD于點(diǎn)M,QNCD于點(diǎn)N.問(wèn)兩動(dòng)點(diǎn)運(yùn)動(dòng)多長(zhǎng)時(shí)間時(shí)△OPM與△OQN全等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小麗和小明上山游玩,小麗乘纜車(chē),小明步行,兩人相約在山頂?shù)睦|車(chē)終點(diǎn)會(huì)合.已知小明行走到纜車(chē)終點(diǎn)的路程是纜車(chē)到山頂?shù)木路長(zhǎng)的2倍,小麗在小明出發(fā)后1小時(shí)才乘上纜車(chē),纜車(chē)的平均速度為190 m/min.設(shè)小明出發(fā)x min后行走的路程為y m.圖中的折線表示小明在整個(gè)行走過(guò)程中yx的函數(shù)關(guān)系.

⑴ 小明行走的總路程是 m,他途中休息了 min

⑵ ①當(dāng)60x90時(shí),求yx的函數(shù)關(guān)系式;

②當(dāng)小麗到達(dá)纜車(chē)終點(diǎn)時(shí),小明離纜車(chē)終點(diǎn)的路程是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖1:ABC中,∠B、C的平分線相交于點(diǎn)O,過(guò)點(diǎn)OEFBCAB、ACE、F

(1)直接寫(xiě)出圖1中所有的等腰三角形.指出EFBE、CF間有怎樣的數(shù)量關(guān)系?

(2)在(1)的條件下,若AB=15,AC=10,求△AEF的周長(zhǎng);

(3)如圖2,若△ABC中,∠B的平分線與三角形外角∠ACG的平分線CO交于點(diǎn)O,過(guò)O點(diǎn)作OEBCABE,交ACF,請(qǐng)問(wèn)(1)中EFBE、CF間的關(guān)系還是否存在,若存在,說(shuō)明理由:若不存在,寫(xiě)出三者新的數(shù)量關(guān)系,并說(shuō)明理由;

(4)如圖3,ABC、ACB的外角平分線的延長(zhǎng)線相交于點(diǎn)O,請(qǐng)直接寫(xiě)出EF,BE,CF,MN之間的數(shù)量關(guān)系.不需證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】五一期間,甲、乙兩家商店以同樣價(jià)格銷(xiāo)售相同的商品,兩家優(yōu)惠方案分別為:甲店一次性購(gòu)物中超過(guò)200元后的價(jià)格部分打七折;乙店一次性購(gòu)物中超過(guò)500元后的價(jià)格部分打五折,設(shè)商品原價(jià)為x元(x≥0),購(gòu)物應(yīng)付金額為y元.

(1)求在甲商店購(gòu)物時(shí)yx之間的函數(shù)關(guān)系;

(2)兩種購(gòu)物方式對(duì)應(yīng)的函數(shù)圖象如圖所示,求交點(diǎn)C的坐標(biāo);

(3)根據(jù)圖象,請(qǐng)直接寫(xiě)出五一期間選擇哪家商店購(gòu)物更優(yōu)惠.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,∠BAC=40°,分別以AB,AC為邊作兩個(gè)等腰三角形ABD和ACE,且AB=AD,AC=AE,∠BAD=∠CAE=90°.

(1)求∠DBC的度數(shù).

(2)求證:BD=CE.

查看答案和解析>>

同步練習(xí)冊(cè)答案