【題目】如圖 1,直線與軸,軸分別交于點(diǎn),點(diǎn),拋物線經(jīng)過點(diǎn),點(diǎn)和點(diǎn),并與直線交于另一點(diǎn).
(1)求拋物線的解析式;
(2)如圖 2,點(diǎn)為軸上一動(dòng)點(diǎn),連接,當(dāng)時(shí),求點(diǎn) 的坐標(biāo);
(3)如圖 3,將拋物線平移,使其頂點(diǎn)是坐標(biāo)原點(diǎn),得到拋物線;將直線向下平移經(jīng)過坐標(biāo)原點(diǎn),交拋物線于另一點(diǎn).點(diǎn),點(diǎn)是上且位于 第一象限內(nèi)一動(dòng)點(diǎn),交于點(diǎn),軸分別交于,試說明:與存在一個(gè)確定的數(shù)量關(guān)系.
【答案】(1);(2);(3),理由詳見解析
【解析】
(1)利用待定系數(shù)法將A、B、C三點(diǎn)的坐標(biāo)代入即可求解;
(2)P點(diǎn)分在A點(diǎn)的左邊和右邊的兩種情況(圖見詳解),當(dāng)P點(diǎn)在A點(diǎn)右邊時(shí),證出,即可通過相似比求出AP1的長(zhǎng)度從而求出P1點(diǎn)坐標(biāo);當(dāng)P點(diǎn)在A點(diǎn)左邊時(shí),通過證出,得到AK的長(zhǎng)度,從而求出K點(diǎn)坐標(biāo),再利用待定系數(shù)法求出直線CK的解析式,P2就是直線CK與x軸的交點(diǎn);
(3)根據(jù)題意求出移動(dòng)后的拋物線及直線OF的解析式,設(shè)出動(dòng)點(diǎn)N的坐標(biāo),通過聯(lián)立方程用N點(diǎn)的坐標(biāo)表示出Q、R、S的橫坐標(biāo),通過觀察這三個(gè)橫坐標(biāo)的值即可得出數(shù)量關(guān)系.
解:(1)直線經(jīng)過B點(diǎn),且B點(diǎn)在x軸上,
.
將代入,得:
拋物線的解析式.
(2)如下圖所示,設(shè)
由
得,
.
I.當(dāng)點(diǎn)在點(diǎn)的右邊,記此時(shí)的點(diǎn)為,
時(shí),.
II.當(dāng)點(diǎn)在點(diǎn)的左邊,時(shí),
記此時(shí)的點(diǎn)為,則有
過點(diǎn)作軸的垂線,交于點(diǎn),
則,又公共邊,
,
設(shè)直線,,
直線,
的坐標(biāo):.
(3),理由如下:
依題意,拋物線的解析式:
的解析式:
設(shè)
直線的解析式:
直線的解析式:
聯(lián)立與
解得
解得
即點(diǎn)S是點(diǎn)Q、點(diǎn)R的中點(diǎn),
即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°.
(1)用尺規(guī)作∠A的平分線交BC邊于點(diǎn)D(不寫作法,保留作圖痕跡);
(2)在(1)的基礎(chǔ)上,已知∠B=30°,AC=6,則線段AD的長(zhǎng)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】茶葉是安徽省主要經(jīng)濟(jì)作物之一,2020年新茶上市期間,某茶廠為獲得最大利益,根據(jù)市場(chǎng)行情,把新茶價(jià)格定為400元/kg,并根據(jù)歷年的相關(guān)數(shù)據(jù)整理出第x天(1≤x≤15,且x為整數(shù))制茶成本(含采摘和加工)和制茶量的相關(guān)信息如下表.假定該茶廠每天制作和銷售的新茶沒有損失,且能在當(dāng)天全部售出(當(dāng)天收入=日銷售額-日制茶成本)
制茶成本(元/kg) | 150+10x |
制茶量(kg) | 40+4x |
(1)求出該茶廠第10天的收入;
(2)設(shè)該茶廠第x天的收入為y(元).試求出y與x之間的函數(shù)關(guān)系式,并求出y的最大值及此時(shí)x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題提出
(1)如圖(1),在等邊三角形ABC中,點(diǎn)M是BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連接AM,以AM為邊作等邊三角形AMN,連接CN,則∠ACN= °.
類比探究
(2)如圖(2),在等邊三角形ABC中,點(diǎn)M是BC延長(zhǎng)線上的任意一點(diǎn)(不含端點(diǎn)C),其他條件不變,(1)中的結(jié)論還成立嗎?請(qǐng)說明理由.
拓展延伸
(3)如圖(3),在等腰三角形ABC中,BA=BC,點(diǎn)M是BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連接AM,以AM為邊作等腰三角形AMN,使AM=MN,連接CN.添加一個(gè)條件,使得∠ABC=∠ACN仍成立,寫出你所添加的條件,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:如圖 1,在和中,,連接 交的延長(zhǎng)線于點(diǎn).則的值是____________.
問題解決:如圖 2,在問題背景的條件下,將繞點(diǎn)在平面內(nèi)旋轉(zhuǎn),點(diǎn)始終在的外部,所在直線交于點(diǎn),若,當(dāng)點(diǎn)與點(diǎn)重合時(shí),的長(zhǎng)是____________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c的對(duì)稱軸為直線x=﹣1,部分圖象如圖所示,下列判斷中:①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若點(diǎn)(,y1),(﹣2,y2)均在拋物線上,則y1>y2;⑤5a﹣2b<0;其中正確的個(gè)數(shù)有( )
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AM是△ABC的中線,D是線段AM上一點(diǎn)(不與點(diǎn)A重合).DE∥AB交AC于點(diǎn)F,CE∥AM,連結(jié)AE.
(1)如圖1,當(dāng)點(diǎn)D與M重合時(shí),求證:四邊形ABDE是平行四邊形;
(2)如圖2,當(dāng)點(diǎn)D不與M重合時(shí),(1)中的結(jié)論還成立嗎?請(qǐng)說明理由.
(3)如圖3,延長(zhǎng)BD交AC于點(diǎn)H,若BH⊥AC,且BH=AM.
①求∠CAM的度數(shù);
②當(dāng)FH=,DM=4時(shí),求DH的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某次臺(tái)風(fēng)來襲時(shí),一棵大樹樹干AB(假定樹干AB垂直于地面)被刮傾斜15°后折斷倒在地上,樹的項(xiàng)部恰好接觸到地面D(如圖所示),量得樹干的傾斜角為∠BAC=15°,大樹被折斷部分和地面所成的角∠ADC=60°,AD=4米,求這棵大樹AB原來的高度是( )米?(結(jié)果精確到個(gè)位,參考數(shù)據(jù):≈1.4,≈1.7,≈2.4)
A.9B.10C.11D.12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線(,,是常數(shù),)經(jīng)過點(diǎn)A(,)和點(diǎn)B (,),且拋物線的對(duì)稱軸在軸的左側(cè). 下列結(jié)論: ① ; ② 方程 有兩個(gè)不等的實(shí)數(shù)根; ③. 其中,正確結(jié)論的個(gè)數(shù)是( ).
A.0B.1C.2D.3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com