【題目】閱讀理解:
二次根式的除法,要化去分母中的根號,需將分子、分母同乘以一個恰當?shù)亩胃剑?/span>
例如:化簡.
解:將分子、分母同乘以得:.
類比應用:
(1)化簡: ;
(2)化簡: .
拓展延伸:
寬與長的比是的矩形叫黃金矩形.如圖①,已知黃金矩形ABCD的寬AB=1.
(1)黃金矩形ABCD的長BC= ;
(2)如圖②,將圖①中的黃金矩形裁剪掉一個以AB為邊的正方形ABEF,得到新的矩形DCEF,猜想矩形DCEF是否為黃金矩形,并證明你的結(jié)論;
(3)在圖②中,連結(jié)AE,則點D到線段AE的距離為 .
【答案】類比應用:(1);(2)2;拓展延伸:(1);(2)矩形DCEF為黃金矩形,理由見解析;(3)
【解析】
類比應用:
(1)仿照題干中的過程進行計算;
(2)仿照題干中的過程進行計算;
拓展延伸:
(1)根據(jù)黃金矩形的定義結(jié)合AB=1進行計算;
(2)根據(jù)題意算出AD的長,從而得出DF,證明DF和EF的比值為即可;
(3)連接AE,DE,過D作DG⊥AE于點G,根據(jù)△AED的面積不同算法列出方程,解出DG的長即可.
解:類比應用:
(1)根據(jù)題意可得:
=;
(2)根據(jù)題意可得:
=
=
=
=2;
拓展延伸:
(1)∵寬與長的比是的矩形叫黃金矩形,
若黃金矩形ABCD的寬AB=1,
則黃金矩形ABCD的長BC===;
(2)矩形DCEF為黃金矩形,理由是:
由裁剪可知:AB=AF=BE=EF=CD=1,
根據(jù)黃金矩形的性質(zhì)可得:AD=BC=,
∴FD=EC=AD-AF==,
∴=,
故矩形DCEF為黃金矩形;
(3)連接AE,DE,過D作DG⊥AE于點G,
∵AB=EF=1,AD=,
∴AE=,
在△AED中,
S△AED =,
即,則,
解得DG=,
∴點D到線段AE的距離為.
科目:初中數(shù)學 來源: 題型:
【題目】天水某公交公司將淘汰某一條線路上“冒黑煙”較嚴重的公交車,計劃購買A型和B型兩行環(huán)保節(jié)能公交車共10輛,若購買A型公交車1輛,B型公交車2輛,共需400萬元;若購買A型公交車2輛,B型公交車1輛,共需350萬元,
(1)求購買A型和B型公交車每輛各需多少萬元?
(2)預計在該條線路上A型和B型公交車每輛年均載客量分別為60萬人次和100萬人次.若該公司購買A型和B型公交車的總費用不超過1220萬元,且確保這10輛公交車在該線路的年均載客量總和不少于650萬人次,則該公司有哪幾種購車方案?哪種購車方案總費用最少?最少總費用是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為的大正方形內(nèi)有一個邊長為的小正方形.
(1)用含字母的代數(shù)式表示圖1中陰影都分的面積為______________;
(2)圖1的陰影部分沿斜線剪開局,拼成了一個如圖2所示的長方形,用含字母的代數(shù)式表示此長方形的面積為_____________(多項式乘積的形式);
(3)比較左、右兩圖的陰影都分面積,請你寫出一個整式乘法的公式_____________;
(4)結(jié)合(3)的公式,計算:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知四邊形ABCD,其中AD//BC,AB⊥BC,將DC沿DE折疊,C落于,交CB于G,且ABGD為長方形(如圖1);再將紙片展開,將AD沿DF折疊,使A點落在DC上一點(如圖2),在兩次折疊過程中,兩條折痕DE、DF所成的角為____________度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖示一架水平飛行的無人機AB的尾端點A測得正前方的橋的左端點P的俯角為α其中tanα=2 ,無人機的飛行高度AH為500 米,橋的長度為1255米.
①求點H到橋左端點P的距離;
②若無人機前端點B測得正前方的橋的右端點Q的俯角為30°,求這架無人機的長度AB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形中,對角線和交于點,且點是和的中點,若的長為10,則和的長可以是( )
A. 5和10B. 8和12C. 10和20D. 20和40
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在四邊形中,平分交于點,點在線段上運動.
(1)如圖1,已知.
①若平分,則______;
②若,試說明;
(2)如圖2,已知,試說明平分.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知EF⊥BC,AD⊥BC, ∠1=∠2,
⑴判斷DM與AB的位置關(guān)系,并說明理由;
⑵若∠BAC=70°,DM平分∠ADC,求∠ACB的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,中, ,;是向右平移5個單位向上平移4個單位之后得到的圖象
(1)兩點的坐標分別為 .
(2)作出平移之后的圖形.
(3)求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com