【題目】已知a、b、c為ABC的內(nèi)角A、B、C所對應(yīng)的邊,滿足下列條件的三角形不是直角三角形的是
A. ∠C=∠A∠BB. a:b:c = 1 : :
C. ∠A∶∠B∶∠C=5∶4∶3D. ,
【答案】C
【解析】
根據(jù)勾股定理的逆定理:如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形,三角形內(nèi)角和為180°進行分析即可.
A、∵∠A+∠B+∠C=180°,
∴∠C=180°-∠A-∠B
∵∠C=∠A-∠B
∴∠A=90°
∴是直角三角形,故此選項不符合題意;
B、∵12+()2=22,∴是直角三角形,故此選項不合題意;
C、∵∠A:∠B:∠C=5:4:3,
∴設(shè)∠A=5x,∠B=4x,∠C=3x,
∵∠A+∠B+∠C=180°,
∴x=15°
∠A=75°,∠B=60°,∠C=45°
∴不是直角三角形,故此選項符合題意;
D、∵b2=a2-c2,
∴a2=b2+c2,是直角三角形,故此選項不合題意;
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三角形中,,,,點是的中點,點從點出發(fā),先以每秒的速度運動到,然后以每秒的速度從運動到.當(dāng)點運動時間 _______秒時,三角形的面積為.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校綠色行動小組組織一批人參加植樹活動,完成任務(wù)的時間()是參加植樹人數(shù)(人)的反比例函數(shù),且當(dāng)人時,.
(1)若平均每人每小時植樹棵,則這次共計要植樹 棵;
(2)當(dāng)時,求的值;
(3)為了能在內(nèi)完成任務(wù),至少需要多少人參加植樹?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖像與反比例函數(shù)的圖像交于第一、三象限內(nèi)的、兩點,與軸交于點,點在軸負半軸上,,且四邊形是平行四邊形,點的縱坐標(biāo)為.
(1)求該反比例函數(shù)和一次函數(shù)的表達式;
(2)連接,求的面積;
(3)直接寫出關(guān)于的不等式的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長是2,點E是AB邊上一動點(點E與點A、B不重合),過點E作FG⊥DE交BC邊于點F、交DA的延長線于點G,且FH∥AB.
(1)當(dāng)DE=時,求AE的長;
(2)求證:DE=GF;
(3)連結(jié)DF,設(shè)AE=x,△DFG的面積為y,求y與x之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校準(zhǔn)備組織師生共60人,從南靖乘動車前往廈門參加夏令營活動,動車票價格如表所示:(教師按成人票價購買,學(xué)生按學(xué)生票價購買).
運行區(qū)間 | 成人票價(元/張) | 學(xué)生票價(元/張) | ||
出發(fā)站 | 終點站 | 一等座 | 二等座 | 二等座 |
南靖 | 廈門 | 26 | 22 | 16 |
若師生均購買二等座票,則共需1020元.
(1)參加活動的教師和學(xué)生各有多少人?
(2)由于部分教師需提早前往做準(zhǔn)備工作,這部分教師均購買一等座票,而后續(xù)前往的教師和學(xué)生均購買二等座票.設(shè)提早前往的教師有x人,購買一、二等座票全部費用為y元.
①求y關(guān)于x的函數(shù)關(guān)系式;
②若購買一、二等座票全部費用不多于1032元,則提早前往的教師最多只能多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了了解八年級學(xué)生的身體素質(zhì)情況,該校體育老師從八年級學(xué)生中隨機抽取了50名進行一分鐘跳繩次數(shù)測試,以測試數(shù)據(jù)為樣本,繪制了如下的統(tǒng)計圖表:
組別 | 次數(shù) | 頻數(shù)(人數(shù)) |
第1組 | 6 | |
第2組 | 8 | |
第3組 | ||
第4組 | 18 | |
第5組 | 6 |
請結(jié)合圖表完成下列問題:
(1)表中的______ ;
(2)請把頻數(shù)分布直方圖補充完整;
(3)所抽取的50名學(xué)生跳繩成績的中位數(shù)落在哪一組?
(4)該校八年級學(xué)生共有500人,若規(guī)定一分鐘跳繩次數(shù)()在時為達標(biāo),請估計該校八年級學(xué)生一分鐘跳繩有多少人達標(biāo)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)戶共摘收水蜜桃1920千克,為尋求合適的銷售價格,進行了6天試銷,試銷情況如下:
第1天 | 第2天 | 第3天 | 第4天 | 第5天 | 第6天 | |
售價 x(元/千克) | 20 | 18 | 15 | 12 | 10 | 9 |
銷售量 y(千克) | 45 | 50 | 60 | 75 | 90 | 100 |
由表中數(shù)據(jù)可知,試銷期間這批水蜜桃的每天銷售量y(千克)與售價x(元/千克)之間滿足我們曾經(jīng)學(xué)過的某種函數(shù)關(guān)系.若在這批水蜜桃的后續(xù)銷售中,每天的銷售量y(千克)與售價x(元/千克)之間都滿足這一函數(shù)關(guān)系.
(1)你認為y與x之間滿足什么函數(shù)關(guān)系?并求y關(guān)于x的函數(shù)表達式.
(2)在試銷6天后,該農(nóng)戶決定將這批水密桃的售價定為15元/千克.
① 若每天都按15元/千克的售價銷售,則余下的水蜜桃預(yù)計還要多少天可以全部售完?
② 該農(nóng)戶按15元/千克的售價銷售20天后,發(fā)現(xiàn)剩下的水蜜桃過于成熟,必須在不超過2天內(nèi)全部售完,因此需要重新確定一個售價,使后面2天都按新的售價銷售且能如期全部售完,則新的售價最高可以定為多少元/千克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上A、B兩點表示的數(shù)分別為a、b,且a、b滿足|a+2|+(b-8)2=0,點P從點A出發(fā),以每秒3個單位長度的速度沿數(shù)軸向右勻速運動,同時點Q從點B出發(fā),以每秒2個單位長度的速度向左勻速運動.設(shè)運動時間為t秒(t>0)
(1) ① 線段AB的中點表示的數(shù)為___________
② 用含t的代數(shù)式表示:t秒后,點P表示的數(shù)為___________
(2) 求當(dāng)t為何值時,PQ=AB
(3) 若點M為PA的中點,點N為PB的中點,點P在運動過程中,線段MN的長度是否發(fā)生變化?若變化,請說明理由;若不變,請求出線段MN的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com