(2003•青海)如圖,登山隊(duì)員在山腳A點(diǎn)測得山頂B的仰角∠CAB=45°,當(dāng)沿傾斜角為30°的斜坡前進(jìn)100米到達(dá)D點(diǎn)后,又在D點(diǎn)測得山頂B點(diǎn)的仰角為60°,求出高BC(精確到1米).(參考數(shù)據(jù):≈1.732,≈1.414)

【答案】分析:過點(diǎn)D作DE⊥AC,△ACB是等腰直角三角形,直角△ADE中滿足解直角三角形的條件.可以設(shè)EC=x,在直角△BDF中,根據(jù)勾股定理,可以用x表示出BF,根據(jù)AC=BC就可以得到關(guān)于x的方程,就可以求出x,得到BC,即可求出山高.
解答:解:過D作DE⊥AC于E,作DF⊥BC于F(1分).
∵∠BAC=45°,∠ACB=90°.
∴∠ABC=45°.(2分)
又∵∠BDF=60°.
∴∠DBF=30°.
∴∠DAB=∠DBA=15°.(3分)
∴DB=DA=100.(4分)
∵∠DAE=30°.
∴FC=DE=AD=50.(5分)
在△BDF中,sin∠BDF=
∴BF=BD×sin∠BDF=100×=50.(6分)
∴山高BC=BF+FC=50+50≈137(米).(7分)
點(diǎn)評(píng):本意的難度較大,是根據(jù)勾股定理,把問題轉(zhuǎn)化為方程問題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(04)(解析版) 題型:解答題

(2003•青海)如圖,已知拋物線y=-x2+bx+c與x軸的兩個(gè)交點(diǎn)分別為A(x1,0),B(x2,0),且
(1)求此拋物線的解析式;
(2)設(shè)此拋物線與y軸的交點(diǎn)為C,過點(diǎn)B、C作直線,求此直線的解析式;
(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年青海省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•青海)如圖,已知拋物線y=-x2+bx+c與x軸的兩個(gè)交點(diǎn)分別為A(x1,0),B(x2,0),且
(1)求此拋物線的解析式;
(2)設(shè)此拋物線與y軸的交點(diǎn)為C,過點(diǎn)B、C作直線,求此直線的解析式;
(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《圓》(11)(解析版) 題型:解答題

(2003•青海)如圖,已知:AB是⊙O的直徑,⊙O過AC的中點(diǎn)D,DE⊥BC,垂足為E,
求證:
(1)DE是⊙O的切線;
(2)CD2=CE•CB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2003年全國中考數(shù)學(xué)試題匯編《圖形認(rèn)識(shí)初步》(01)(解析版) 題型:選擇題

(2003•青海)如圖,點(diǎn)C是線段AB的中點(diǎn),點(diǎn)D是線段BC的中點(diǎn),下面等式不正確的是( )
A.CD=AD-BC
B.CD=AC-DB
C.CD=AB-BD
D.CD=AB

查看答案和解析>>

同步練習(xí)冊(cè)答案