【題目】如圖,在△ABC中,∠ACB90°,ACBC2,將△ABCAC的中點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°得到△ABC′,其中點(diǎn)B的運(yùn)動路徑為,則圖中陰影部分的面積為(  )

A.πB.2C.D.

【答案】A

【解析】

先利用勾股定理求出DB′,AB′再根據(jù)S陰影=S扇形BDB-SDBC-SDBC,計(jì)算即可.

解:連接DB,DB′,作DHA′B′,△ABCAC的中點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°得到△A'B′C',此時(shí)點(diǎn)A′在斜邊AB上,CA′⊥AB,

∵∠C′A′B′=45°,

∴DH=sin45°×AD=×1=

BC=2,CD=1

DB,

ACBC2,

AB=A′B′2,

BC=2=,

∴S1×2÷2×÷2π

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖拋物y=﹣x軸交于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)CC,D兩點(diǎn)關(guān)于拋物線對稱軸對稱,連接BDy軸于點(diǎn)E,拋物線對稱軸交x軸于點(diǎn)F

1)點(diǎn)P為線段BD上方拋物線上的一點(diǎn),連接PD,PE.點(diǎn)My軸上一點(diǎn),過點(diǎn)MMNy軸交拋物線對稱軸于點(diǎn)N.當(dāng)△PDE面積最大時(shí),求PM+MN+NF的最小值;

2)如圖2,在(1)中PM+MN+NF取得最小值時(shí),將△PME繞點(diǎn)P順時(shí)針旋轉(zhuǎn)120°后得到△PME′,點(diǎn)GMN的中點(diǎn),連接MG交拋物線的對稱軸于點(diǎn)H,過點(diǎn)H作直線lPM,點(diǎn)R是直線l上一點(diǎn),在平面直角坐標(biāo)系中是否存在一點(diǎn)S,使以點(diǎn)M′,點(diǎn)G,點(diǎn)R,點(diǎn)S為頂點(diǎn)的四邊形是矩形?若存在,直接寫出點(diǎn)S的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中有一直角三角形AOB,O為坐標(biāo)原點(diǎn),OA=1,tan∠BAO=3,將此三角形繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△DOC,拋物線yax2+bx+c經(jīng)過點(diǎn)A、B、C

(1)求拋物線的解析式;

(2)若點(diǎn)P是第二象限內(nèi)拋物線上的動點(diǎn),其橫坐標(biāo)為t,設(shè)拋物線對稱軸lx軸交于一點(diǎn)E,連接PE,交CDF,求以CE、F為頂點(diǎn)三角形與△COD相似時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知B港口位于A觀測點(diǎn)北偏東53.2°方向,且其到A觀測點(diǎn)正北方向的距離BD的長為16km,一艘貨輪從B港口以40km/h的速度沿如圖所示的BC方向航行,15min后達(dá)到C處,現(xiàn)測得C處位于A觀測點(diǎn)北偏東79.8°方向,求此時(shí)貨輪與A觀測點(diǎn)之間的距離AC的長(精確到0.1km).(參考數(shù)據(jù):sin53.2°≈0.80,cos53.2°≈0.60,sin79.8°≈0.98,cos79.8°≈0.18,tan26.6°≈0.50,≈1.41,≈2.24)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了美化環(huán)境,建設(shè)宜居城市,我市準(zhǔn)備在一個(gè)廣場上種植甲、乙兩種花卉,經(jīng)市場調(diào)查,甲種花卉的種植費(fèi)用y(元)與種植面積xm2)之間的函數(shù)關(guān)系如圖所示,乙種花卉的種植費(fèi)用為每平方米100元.

1)試求出yx的函數(shù)關(guān)系式;

2)廣場上甲、乙兩種花卉的種植面積共1200m2,若甲種花卉的種植面積不少于200m2,且不超過乙種花卉的種植面積的2倍.

①試求種植總費(fèi)用W元與種植面積xm2)之間的函數(shù)關(guān)系式;

②應(yīng)該怎樣分配甲、乙兩種花卉的種植面積才能使種植總費(fèi)用W最少?最少總費(fèi)用為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】扶貧攻堅(jiān)活動中,某單位計(jì)劃選購甲、乙兩種物品慰問貧困戶.已知甲物品的單價(jià)比乙物品的單價(jià)高10元,若用500元單獨(dú)購買甲物品與450元單獨(dú)購買乙物品的數(shù)量相同.

①請問甲、乙兩種物品的單價(jià)各為多少?

②如果該單位計(jì)劃購買甲、乙兩種物品共55件,總費(fèi)用不少于5000元且不超過5050元,通過計(jì)算得出共有幾種選購方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某鄉(xiāng)鎮(zhèn)實(shí)施產(chǎn)業(yè)精準(zhǔn)扶貧,幫助貧困戶承包了若干畝土地種植新品草莓,已知該草莓的成本為每千克10元,草莓成熟后投入市場銷售,經(jīng)市場調(diào)查發(fā)現(xiàn),草莓銷售不會虧本,且每天的銷售量y(千克)與銷售單價(jià)x(元/千克)之間函數(shù)關(guān)系如圖所示.

1)求yx的函數(shù)關(guān)系式,并寫出x的取值范圍.

2)當(dāng)該品種草莓的定價(jià)為多少時(shí),每天銷售獲得利潤最大?最大利潤是多少?

3)某村今年草莓采摘期限30天,預(yù)計(jì)產(chǎn)量6000千克,則按照(2)中的方式進(jìn)行銷售,能否銷售完這批草莓?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我校對全校學(xué)生進(jìn)傳統(tǒng)文化禮儀知識測試,為了了解測試結(jié)果,隨機(jī)抽取部分學(xué)生的成績進(jìn)行分析,現(xiàn)將成績分為三個(gè)等級:不合格、一般、優(yōu)秀,并繪制成如下兩幅統(tǒng)計(jì)圖(不完整).

請你根據(jù)圖中所給的信息解答下列問題:(1)本次隨機(jī)抽取的人數(shù)是   人,并將以上兩幅統(tǒng)計(jì)圖補(bǔ)充完整;

2)若一般優(yōu)秀均被視為達(dá)標(biāo)成績,則我校被抽取的學(xué)生中有   人達(dá)標(biāo);

3)若我校學(xué)生有1200人,請你估計(jì)此次測試中,全校達(dá)標(biāo)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C0,﹣2),點(diǎn)A的坐標(biāo)是(2,0),P為拋物線上的一個(gè)動點(diǎn),過點(diǎn)PPDx軸于點(diǎn)D,交直線BC于點(diǎn)E,拋物線的對稱軸是直線x=﹣1

1)求拋物線的函數(shù)表達(dá)式;

2)若點(diǎn)P在第二象限內(nèi),且PEOD,求△PBE的面積.

3)在(2)的條件下,若M為直線BC上一點(diǎn),在x軸的上方,是否存在點(diǎn)M,使△BDM是以BD為腰的等腰三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案