【題目】如圖,⊙M與x軸相交于A(2,0)、B(8,0),與y軸相切于點(diǎn)C,P是優(yōu)弧AB上的一點(diǎn),則tan∠APB為( )
A.
B.
C.
D.
【答案】B
【解析】解:如圖,作MN⊥AB于N,連接PA、PB、MA、MB、MC.
∵A(2,0),B(8,0),
∴OA=2,OB=8,AN=BN=3,
∵C是切點(diǎn),
∴∠MCO=∠CON=∠MNO=90°,
∴四邊形CONM是矩形,
∴CM=AM=ON=5,
在Rt AMN中,MN= =4,
∵∠P= ∠AMB=∠AMN,
∴tan∠APB=tan∠AMN= = .
故選B.
【考點(diǎn)精析】本題主要考查了切線(xiàn)的性質(zhì)定理和解直角三角形的相關(guān)知識(shí)點(diǎn),需要掌握切線(xiàn)的性質(zhì):1、經(jīng)過(guò)切點(diǎn)垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)2、經(jīng)過(guò)切點(diǎn)垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心3、圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑;解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系xOy中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(﹣4,1)、B(﹣1,1)、C(﹣4,3).
(1)畫(huà)出Rt△ABC關(guān)于原點(diǎn)O成中心對(duì)稱(chēng)的圖形Rt△A1B1C1;
(2)若Rt△ABC與Rt△A2BC2關(guān)于點(diǎn)B中心對(duì)稱(chēng),則點(diǎn)A2的坐標(biāo)為、C2的坐標(biāo)為
(3)求點(diǎn)A繞點(diǎn)B旋轉(zhuǎn)180°到點(diǎn)A2時(shí),點(diǎn)A在運(yùn)動(dòng)過(guò)程中經(jīng)過(guò)的路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】意大利著名數(shù)學(xué)家斐波那契在研究兔子繁殖問(wèn)題時(shí),發(fā)現(xiàn)有這樣一組數(shù):1,1,2,3,5,8,13,…,其中從第三個(gè)數(shù)起,每一個(gè)數(shù)都等于它前面兩個(gè)數(shù)的和.現(xiàn)以這組數(shù)中的各個(gè)數(shù)作為正方形的邊長(zhǎng)值構(gòu)造正方形,再分別依次從左到右取2個(gè)、3個(gè)、4個(gè)、5個(gè)…正方形拼成如上長(zhǎng)方形,若按此規(guī)律繼續(xù)作長(zhǎng)方形,則序號(hào)為⑦的長(zhǎng)方形周長(zhǎng)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,將△ABC沿直線(xiàn)MN翻折后,頂點(diǎn)C恰好落在AB邊上的點(diǎn)D處,已知MN∥AB,MC=6,NC= ,則四邊形MABN的面積是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)為提倡節(jié)約用水,準(zhǔn)備實(shí)行自來(lái)水“階梯計(jì)費(fèi)”方式,用戶(hù)用水不超出基本用水量的部分享受基本價(jià)格,超出基本用水量的部分實(shí)行加價(jià)收費(fèi).為更好地決策,自來(lái)水公司隨機(jī)抽取部分用戶(hù)的用水量數(shù)據(jù),并繪制了如下不完整的統(tǒng)計(jì)圖(每組數(shù)據(jù)包括右端點(diǎn)但不包括左端點(diǎn)),請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:
(1)此次調(diào)查抽取了多少用戶(hù)的用水量數(shù)據(jù)?
(2)補(bǔ)全頻數(shù)分布直方圖,求扇形圖中“15噸~20噸”部分的圓心角的度數(shù);
(3)如果自來(lái)水公司將基本用水量定為每戶(hù)25噸,那么該地區(qū)20萬(wàn)用戶(hù)中約有多少用戶(hù)的用水全部享受基本價(jià)格?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩車(chē)從A、B兩地于上午9點(diǎn)鐘同時(shí)出發(fā),相向而行,已知甲的速度比乙快2千米/時(shí),到上午11時(shí)兩車(chē)還相距36千米,又過(guò)了2小時(shí)后,兩車(chē)又相距36千米.
(1)求甲乙兩地間的距離與兩車(chē)的速度;
(2)若甲乙兩車(chē)分別從A、B兩地同時(shí)相向而行,到B、A兩地后立即返回,求兩車(chē)第一次相遇和第二次相遇所走的時(shí)間是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)y=﹣x2+2x+3與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,連接BC.
(1)求A,B,C三點(diǎn)的坐標(biāo);
(2)若點(diǎn)P為線(xiàn)段BC上一點(diǎn)(不與B,C重合),PM∥y軸,且PM交拋物線(xiàn)于點(diǎn)M,交x軸于點(diǎn)N,當(dāng)△BCM的面積最大時(shí),求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,當(dāng)△BCM的面積最大時(shí),在拋物線(xiàn)的對(duì)稱(chēng)軸上存在一點(diǎn)Q,使得△CNQ為直角三角形,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠(chǎng)接受了20天內(nèi)生產(chǎn)1200臺(tái)GH型電子產(chǎn)品的總?cè)蝿?wù).已知每臺(tái)GH型產(chǎn)品由4個(gè)G型裝置和3個(gè)H型裝置配套組成.工廠(chǎng)現(xiàn)有80名工人,每個(gè)工人每天能加工6個(gè)G型裝置或3個(gè)H型裝置.工廠(chǎng)將所有工人分成兩組同時(shí)開(kāi)始加工,每組分別加工一種裝置,并要求每天加工的G、H型裝置數(shù)量正好全部配套組成GH型產(chǎn)品.
(1)按照這樣的生產(chǎn)方式,工廠(chǎng)每天能配套組成多少套GH型電子產(chǎn)品?
(2)為了在規(guī)定期限內(nèi)完成總?cè)蝿?wù),工廠(chǎng)決定補(bǔ)充一些新工人,這些新工人只能獨(dú)立進(jìn)行G型裝置的加工,且每人每天只能加工4個(gè)G型裝置.請(qǐng)問(wèn)至少需要補(bǔ)充多少名新工人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AB=50,AC=30,D、E、F分別是AC、AB、BC的中點(diǎn).點(diǎn)P從點(diǎn)D出發(fā)沿折線(xiàn)DE﹣EF﹣FC﹣CD以每秒7個(gè)單位長(zhǎng)的速度勻速運(yùn)動(dòng);點(diǎn)Q從點(diǎn)B出發(fā)沿BA方向以每秒4個(gè)單位長(zhǎng)的速度勻速運(yùn)動(dòng),過(guò)點(diǎn)Q作射線(xiàn)QK⊥AB,交折線(xiàn)BC﹣CA于點(diǎn)G.點(diǎn)P、Q同時(shí)出發(fā),當(dāng)點(diǎn)P繞行一周回到點(diǎn)D時(shí)停止運(yùn)動(dòng),點(diǎn)Q也隨之停止.設(shè)點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間是t秒(t>0).
(1)D、F兩點(diǎn)間的距離是;
(2)射線(xiàn)QK能否把四邊形CDEF分成面積相等的兩部分?若能,求出t的值.若不能,說(shuō)明理由;
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到折線(xiàn)EF﹣FC上,且點(diǎn)P又恰好落在射線(xiàn)QK上時(shí),求t的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com