【題目】如圖,AB為⊙O的直徑,劣弧,BDCE,連接AE并延長交BDD.

(1)求證:BD是⊙O的切線;

(2)若⊙O的半徑為2cm,AC=3cm,求BD的長.

【答案】(1)證明見解析;(2)

【解析】

試題(1)根據(jù)題意得出AB平分CE,由垂徑定理得推論得出AB⊥CE,再由BD∥CE,得出BD是⊙O的切線;
(2)連接BE,則∠AEB=90°,在直角三角形中,利用三角函數(shù)的定義求得AD,再在Rt△ABD中,由勾股定理得出BD的長.

試題解析:

(1)證明:

AB是直徑,(1分)

ABCE

BDCE,

DBAB,

BD是⊙O的切線

(2)解:連接BE,AB為⊙O的直徑(4分),

∴∠AEB=90°

∴在RtABE中,cosBAE=

∴在Rt△ABD中,cos∠BAD=,

∴在RtABD中,由勾股定理得:BD=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某縣教育局為了豐富初中學生的大課間活動,要求各學校開展形式多樣的陽光體育活動.某中學就學生體育活動興趣愛好的問題,隨機調(diào)查了本校某班的學生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖:

1)在這次調(diào)查中,喜歡籃球項目的同學有   人,在扇形統(tǒng)計圖中,乒乓球的百分比為   %,如果學校有800名學生,估計全校學生中有   人喜歡籃球項目.

2)請將條形統(tǒng)計圖補充完整.

3)在被調(diào)查的學生中,喜歡籃球的有2名女同學,其余為男同學.現(xiàn)要從中隨機抽取2名同學代表班級參加;@球隊,請直接寫出所抽取的2名同學恰好是1名女同學和1名男同學的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,△ABC中,AB=BC,DEAB于點E,DFBC于點D,交ACF.

若∠AFD=155°,求∠EDF的度數(shù);

若點FAC的中點,求證:∠CFD=B.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,,連結(jié)AC,過點C作直線lAB,點P是直線l上的一個動點,直線PA與⊙O交于另一點D,連結(jié)CD,設(shè)直線PB與直線AC交于點E.

(1)求∠BAC的度數(shù);

(2)當點DAB上方,且CDBP時,求證:PC=AC;

(3)在點P的運動過程中

①當點A在線段PB的中垂線上或點B在線段PA的中垂線上時,求出所有滿足條件的∠ACD的度數(shù);

②設(shè)⊙O的半徑為6,點E到直線l的距離為3,連結(jié)BD,DE,直接寫出BDE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四張編號為A,B,C,D的卡片(除編號外,其余完全相同)的正面分別寫上如圖所示的正整數(shù)后,背面向上,洗勻放好.

(1)我們知道,滿足a2+b2=c2的三個正整數(shù)a,b,c成為勾股數(shù),嘉嘉從中隨機抽取一張,求抽到的卡片上的數(shù)是勾股數(shù)的概率P1;

(2)琪琪從中隨機抽取一張(不放回),再從剩下的卡片中隨機抽取一張(卡片用A,B,C,D表示).請用列表或畫樹形圖的方法求抽到的兩張卡片上的數(shù)都是勾股數(shù)的概率P2,并指出她與嘉嘉抽到勾股數(shù)的可能性一樣嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A、B為x軸上兩點,C、D為y軸上的兩點,經(jīng)

過點A、C、B的拋物線的一部分C1與經(jīng)過點A、D、B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封

閉曲線稱為“蛋線”.已知點C的坐標為(0,),點M是拋物線C2<0)的頂點.

(1)求A、B兩點的坐標;

(2)“蛋線”在第四象限上是否存在一點P,使得PBC的面積最大?若存在,求出PBC面積的最大值;若不存在,請說明理由;

(3)當BDM為直角三角形時,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,DBC的中點,過D點的直線EGAB于點E,交AB的平行線CG于點G,DFEG,交AC于點F.

(1)求證:BE=CG;

(2)判斷BE+CFEF的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形紙片ABCD中,∠A=70°,∠B=80°,將紙片折疊,使C,D落在AB邊上的C′,D′處,折痕為MN,則∠AMD′+∠BNC′=( ).

A. 60° B. 70° C. 80° D. 90°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,ADB≌△EDB,BDE≌△CDE,B,E,C在一條直線上.下列結(jié)論:①BD是∠ABE的平分線;②ABAC;③∠C=30°;④線段DEBDC的中線;⑤AD+BD=AC.其中正確的有( )個.

A.2B.3C.4D.5

查看答案和解析>>

同步練習冊答案