【題目】愛好思考的小茜在探究兩條直線的位置關系查閱資料時,發(fā)現了“中垂三角形”,即兩條中線互相垂直的三角形稱為“中垂三角形”.如圖(1)、圖(2)、圖(3)中,AM、BN是△ABC的中線,AN⊥BN于點P,像△ABC這樣的三角形均為“中垂三角形”.設BC=a,AC=b,AB=c.
【特例探究】
(1)如圖1,當tan∠PAB=1,c=4時,a= ,b= ;
如圖2,當∠PAB=30°,c=2時,a= ,b= ;
【歸納證明】
(2)請你觀察(1)中的計算結果,猜想a2、b2、c2三者之間的關系,用等式表示出來,并利用圖3證明你的結論.
【拓展證明】
(3)如圖4,ABCD中,E、F分別是AD、BC的三等分點,且AD=3AE,BC=3BF,連接AF、BE、CE,且BE⊥CE于E,AF與BE相交點G,AD=3,AB=3,求AF的長.
【答案】(1)4,4;,.(2)a2+b2=5c2,理由見解析.(3)4.
【解析】
試題分析:(1)①首先證明△APB,△PEF都是等腰直角三角形,求出PA、PB、PE、PF,再利用勾股定理即可解決問題.②連接EF,在RT△PAB,RT△PEF中,利用30°性質求出PA、PB、PE、PF,再利用勾股定理即可解決問題.(2)結論a2+b2=5c2.設MP=x,NP=y,則AP=2x,BP=2y,利用勾股定理分別求出a2、b2、c2即可解決問題.(3)取AB中點H,連接FH并且延長交DA的延長線于P點,首先證明△ABF是中垂三角形,利用(2)中結論列出方程即可解決問題.
試題解析:(1)解:如圖1中,∵CE=AE,CF=BF,
∴EF∥AB,EF=AB=2,
∵tan∠PAB=1,
∴∠PAB=∠PBA=∠PEF=∠PFE=45°,
∴PF=PE=2,PB=PA=4,
∴AE=BF==2.
∴b=AC=2AE=4,a=BC=4.
如圖2中,連接EF,
,∵CE=AE,CF=BF,
∴EF∥AB,EF=AB=1,
∵∠PAB=30°,
∴PB=1,PA=,
在RT△EFP中,∵∠EFP=∠PAB=30°,
∴PE=,PF=,
∴AE==,BF==,
∴a=BC=2BF=,b=AC=2AE=,
(2)結論
證明:如圖3中,連接EF.
∵AF、BE是中線,
∴EF∥AB,EF=AB,
∴△FPE∽△APB,
∴==,
設FP=x,EP=y,則AP=2x,BP=2y,
∴a2=BC2=4BF2=4(FP2+BP2)=4x2+16y2,
b2=AC2=4AE2=4(PE2+AP2)=4y2+16x2,
c2=AB2=AP2+BP2=4x2+4y2,
∴a2+b2=20x2+20y2=5(4x2+4y2)=5c2.
(3)解:如圖4中,在△AGE和△FGB中,
,
∴△AGE≌△FGB,
∴BG=FG,取AB中點H,連接FH并且延長交DA的延長線于P點,
同理可證△APH≌△BFH,
∴AP=BF,PE=CF=2BF,
即PE∥CF,PE=CF,
∴四邊形CEPF是平行四邊形,
∴FP∥CE,
∵BE⊥CE,
∴FP⊥BE,即FH⊥BG,
∴△ABF是中垂三角形,
由(2)可知AB2+AF2=5BF2,
∵AB=3,BF=AD=,
∴9+AF2=5×()2,
∴AF=4.
科目:初中數學 來源: 題型:
【題目】(1)作圖題:某學校正在進行校園環(huán)境的改造工程設計, 準備在校內一塊四邊形花壇內栽上一棵黃桷樹.如圖,要求黃桷樹的位置點P到邊AB、BC的距離相等,并且點P到點A、D的距離也相等.請用尺規(guī)作圖作出栽種黃桷樹的位置點P(不寫作法,保留作圖痕跡).
(2)用如圖(1)所示的瓷磚拼成一個正方形,使拼成的圖案成軸對稱圖形,請你在圖(2)、圖(3)、圖(4)中各畫出一種拼法.(要求三種拼法各不相同,所畫圖案中的陰影部分用斜線表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC、BD相交于點O,過點D作對角線BD的垂線交BA的延長線于點E.
(1)證明:四邊形ACDE是平行四邊形;
(2)若AC=8,BD=6,求△ADE的周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列說法中,正確的有( )
①等腰三角形的兩腰相等;②等腰三角形的兩底角相等;③等腰三角形底邊上的中線與底邊上的高相等;④等腰三角形是軸對稱圖形.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com