【題目】我們規(guī)定正數(shù)的正分數(shù)指數(shù)冪的意義(a>0,m,n是正整數(shù),且n.>1)如于是,在條件a>0,m,n是正整數(shù),且n.>1下,根式都可以寫成分數(shù)指數(shù)冪的形式正數(shù)的負分數(shù)指數(shù)冪的意義與負整數(shù)指數(shù)冪的意義相仿,我們規(guī)定 ,規(guī)定了分數(shù)指數(shù)冪的意義以后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù)整數(shù)指數(shù)冪的運算性質(zhì)對于有理數(shù)指數(shù)冪也同樣適用根據(jù)上述定義,解答下面的問題:

(1)求值:=____, _____=;

(2)計算:_____;

(3)用分數(shù)指數(shù)冪的形式表:

(4),求的值.

【答案】(1)8;;(2)1;(3);(4)23.

【解析】

本題是典型的指數(shù)冪的概念問題,由題意知,正數(shù)的分數(shù)指數(shù)冪是有意義的,0的正分數(shù)指數(shù)冪等于0,0的負分數(shù)指數(shù)冪沒有意義,然后利用指數(shù)冪的運算法則計算即可.

(1)8;

(2)1

(3)

4

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知是等邊三角形,點的中點,點在射線上,點在射線上,.

1)如圖1,若點點重合,求證:

2)如圖2,若點在線段上,點在線段上,求的值;

3)如圖3,若,直接寫出的度數(shù)為______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,將任意兩點P(x1,y1)與Q(x2,y2)之間的“直距”定義為:DPQ=|x1﹣x2|+|y1﹣y2|.

例如:點M(1,﹣2),點N(3,﹣5),則DMN=|1﹣3|+|﹣2﹣(﹣5)|=5.已知點A(1,0)、點B(﹣1,4).

(1)則DAO=  ,DBO=  ;

(2)如果直線AB上存在點C,使得DCO為2,請你求出點C的坐標;

(3)如果⊙B的半徑為3,點E為⊙B上一點,請你直接寫出DEO的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們常見的炒菜鍋和鍋蓋都是拋物線面,經(jīng)過鍋心和蓋心的縱斷面是兩端拋物線組合而成的封閉圖形,不妨簡稱為鍋線,鍋口直徑為,鍋深,鍋蓋高(鍋口直徑與鍋蓋直徑視為相同),建立直角坐標系如圖所示(圖是備用圖),如果把鍋縱斷面的拋物線記為,把鍋蓋縱斷面的拋物線記為

的解析式;

如果炒菜鍋時的水位高度是,求此時水面的直徑;

如果將一個底面直徑為,高度為的圓柱形器皿放入炒菜鍋內(nèi)蒸食物,鍋蓋能否正常蓋上?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC△ABD不全等,且AC=AD=1,∠ABD=∠ABC=45°,∠ACB=60°,則CD=   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB∥CD,CE、BE的交點為E,現(xiàn)作如下操作:

第一次操作,分別作∠ABE∠DCE的平分線,交點為E1,

第二次操作,分別作∠ABE1∠DCE1的平分線,交點為E2,

第三次操作,分別作∠ABE2∠DCE2的平分線,交點為E3,

n次操作,分別作∠ABEn1∠DCEn1的平分線,交點為En

∠En=1度,那∠BEC等于   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:已知在△ABC中,AB=AC,DBC邊的中點,過點DDEAB,DFAC,垂足分別為E,F(xiàn).

(1)求證:DE=DF;

(2)若∠A=60°,BE=1,求△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面內(nèi)有一等腰RtABC,ACB=90°,點A在直線l上.過點CCE1于點E,過點BBFl于點F,測量得CE=3,BF=2,則AF的長為(  )

A. 5 B. 4 C. 8 D. 7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ABC=90°,以AB為直徑的⊙OAC邊交于點D,過點D作⊙O的切線交BC于點E,連接OE

(1)證明OEAD;

(2)①當∠BAC=   °時,四邊形ODEB是正方形.

②當∠BAC=   °時,AD=3DE.

查看答案和解析>>

同步練習冊答案