【題目】如圖,在四邊形ABCD中,ADBC,ADBC,∠B90°,AGCDBC于點(diǎn)G,點(diǎn)E、F分別為AG、CD的中點(diǎn),連接DE、FG

(1)求證:四邊形DEGF是平行四邊形;

(2)當(dāng)點(diǎn)GBC的中點(diǎn)時(shí),求證:四邊形DEGF是菱形.

【答案】1)證明見詳解;(2)證明見詳解

【解析】

1)求出平行四邊形AGCD,推出CD=AG,推出EG=DF,EGDF,根據(jù)平行四邊形的判定推出即可;
2)連接DG,求出∠DGC=90°,求出DF=GF,根據(jù)菱形的判定推出即可.

證明:(1)∵AGDC,ADBC,
∴四邊形AGCD是平行四邊形,
AG=DC,
EF分別為AG、DC的中點(diǎn),
GE=AGDF=DC,
GE=DF,GEDF,
∴四邊形DEGF是平行四邊形;
2)連結(jié)DG,


∵四邊形AGCD是平行四邊形,
AD=CG,
GBC中點(diǎn),
BG=CG=AD,
ADBG,
∴四邊形ABGD是平行四邊形,
ABDG
∵∠B=90°,
∴∠DGC=B=90°,
FCD中點(diǎn),
GF=DF=CF,
GF=DF
∵四邊形DEGF是平行四邊形,
∴四邊形DEGF是菱形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一前夕,某幼兒園園長(zhǎng)到廠家選購(gòu)A、B兩種品牌的兒童服裝,每套A品牌服裝進(jìn)價(jià)比B品牌服裝每套進(jìn)價(jià)多25元,用2000元購(gòu)進(jìn)A種服裝數(shù)量是用750元購(gòu)進(jìn)B種服裝數(shù)量的2倍.

A、B兩種品牌服裝每套進(jìn)價(jià)分別為多少元?

該服裝A品牌每套售價(jià)為130元,B品牌每套售價(jià)為95元,服裝店老板決定,購(gòu)進(jìn)B品牌服裝的數(shù)量比購(gòu)進(jìn)A品牌服裝的數(shù)量的2倍還多4套,兩種服裝全部售出后,可使總的獲利超過(guò)1200元,則最少購(gòu)進(jìn)A品牌的服裝多少套?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知線段AB、a、b

1)請(qǐng)用尺規(guī)按下列要求作圖:(不要求寫作法,但要保留作圖痕跡)

延長(zhǎng)線段ABC,使BCa;

反向延長(zhǎng)線段ABD,使ADb

2)在(1)的條件下,如果AB8cm,a6m,b10cm,且點(diǎn)ECD的中點(diǎn),求線段AE的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB、CD相交于點(diǎn)O.已知∠BOD=75°,OE把∠AOC分成兩個(gè)角,且∠AOE:∠EOC=2:3.

(1)求∠AOE的度數(shù);

(2)若OF平分∠BOE,問(wèn):OB是∠DOF的平分線嗎?試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AD和BE是高,ABE=45°,點(diǎn)F是AB的中點(diǎn),AD與FE、BE分別交于點(diǎn)G、H,CBE=BAD.有下列結(jié)論:FD=FE;AH=2CD;BCAD=AE2SABC=4SADF.其中正確的有

A.1個(gè) B.2 個(gè) C.3 個(gè) D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用小立方塊搭一幾何體,使它的主視圖和俯視圖如圖所示.俯視圖中小正方形中的字母表示在該位置小立方塊的個(gè)數(shù),請(qǐng)問(wèn):

1a表示幾?b的最大值是多少?

2)這個(gè)幾何體最少由幾個(gè)小正方塊搭成?最多呢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是邊長(zhǎng)為6的正方形,點(diǎn)E在邊AB上,BE4,過(guò)點(diǎn)EEFBC,分別交BD,CD于點(diǎn)G,F兩點(diǎn),若M,N分別是DG,CE的中點(diǎn),則MN的長(zhǎng)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=2x+2與y軸交于A點(diǎn),與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)M,過(guò)M作MH⊥x軸于點(diǎn)H,且tan∠AHO=2.

(1)求k的值;

(2)在y軸上是否存在點(diǎn)B,使以點(diǎn)B、A、H、M為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出B點(diǎn)坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由;

(3)點(diǎn)N(a,1)是反比例函數(shù)y=(x>0)圖象上的點(diǎn),在x軸上有一點(diǎn)P,使得PM+PN最小,請(qǐng)求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案