【題目】如圖,要在湖兩岸A,B兩點(diǎn)之間修建一座觀賞橋,由于條件限制,無(wú)法直接測(cè)量A、B兩點(diǎn)間的距離,于是小明想出來(lái)這樣一種做法:在AB的垂線BF上取兩點(diǎn)C、D,使BCCD,再定出BF的垂線DE,使A,C,E三點(diǎn)在一條直線上,這時(shí)測(cè)得DE50米,則AB_________米.

【答案】50

【解析】

根據(jù)在AB的垂線BF上取兩點(diǎn)C、D,使BC=CD,再定出BF的垂線DE,使A,C,E三點(diǎn)在一條直線上可以得出△ABC≌△EDC,從而可以得到AB=ED,即可得出答案。

因?yàn)锽C=CD,DE⊥BF,在△ABC和△EDC中,∠ABC=∠EDC=90°,BC=DE,∠ACB=∠ECD,所以△ABC≌△EDC(ASA),所以AB=DE,因?yàn)镈E=50,所以AB=50,故答案為50。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料

小明遇到這樣一個(gè)問題:求計(jì)算所得多項(xiàng)式的一次項(xiàng)系數(shù).

小明想通過(guò)計(jì)算所得的多項(xiàng)式解決上面的問題,但感覺有些繁瑣,他想探尋一下,是否有相對(duì)簡(jiǎn)潔的方法.

他決定從簡(jiǎn)單情況開始,先找所得多項(xiàng)式中的一次項(xiàng)系數(shù),通過(guò)觀察發(fā)現(xiàn):

也就是說(shuō),只需用中的一次項(xiàng)系數(shù)1乘以中的常數(shù)項(xiàng)3,再用中的常數(shù)項(xiàng)2乘以中的一次項(xiàng)系數(shù)2,兩個(gè)積相加,即可得到一次項(xiàng)系數(shù).

延續(xù)上面的方法,求計(jì)算所得多項(xiàng)式的一次項(xiàng)系數(shù),可以先用的一次項(xiàng)系數(shù)1的常數(shù)項(xiàng)3,的常數(shù)項(xiàng)4,相乘得到12;再用的一次項(xiàng)系數(shù)2,的常數(shù)項(xiàng)2,的常數(shù)項(xiàng)4,相乘得到16;然后用的一次項(xiàng)系數(shù)3的常數(shù)項(xiàng)2的常數(shù)項(xiàng)3,相乘得到18.最后將1216,18相加,得到的一次項(xiàng)系數(shù)為46.

參考小明思考問題的方法,解決下列問題:

(1)計(jì)算所得多項(xiàng)式的一次項(xiàng)系數(shù)為____________________.

(2)計(jì)算所得多項(xiàng)式的一次項(xiàng)系數(shù)為_____________.

(3)的一個(gè)因式,求、的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P⊙O的直徑AB的延長(zhǎng)線上,PC⊙O的切線,點(diǎn)C為切點(diǎn),連接AC,過(guò)點(diǎn)APC的垂線,點(diǎn)D為垂足,AD⊙O于點(diǎn)E.

(1)如圖1,求證:∠DAC=∠PAC;

(2)如圖2,點(diǎn)F(與點(diǎn)C位于直徑AB兩側(cè))在⊙O上,,連接EF,過(guò)點(diǎn)FAD的平行線交PC于點(diǎn)G,求證:FG=DE+DG;

(3)(2)的條件下,如圖3,若AE=DG,PO=5,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:在四邊形ABFC中,=90的垂直平分線EFBC于點(diǎn)D,AB于點(diǎn)E,CF=AE

(1)試探究,四邊形BECF是什么特殊的四邊形;

(2)當(dāng)的大小滿足什么條件時(shí),四邊形BECF是正方形?請(qǐng)回答并證明你的結(jié)論.

(特別提醒:表示角最好用數(shù)字)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AC上取點(diǎn)B,在其同一側(cè)作兩個(gè)等邊三角形ABD BCE ,連接AE,CDGF,下列結(jié)論正確的有(

AE DC;②AHC120;③AGB≌△DFB;④BH平分AHC;⑤GFAC

A.①②④B.①③⑤C.①③④⑤D.①②③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在ABC中,∠BAC=90°,AB=AC,點(diǎn)DAC上,點(diǎn)EBA的延長(zhǎng)線上,BDCE相交于點(diǎn)F, BD=CE.

1)求證:BFCE.

2)如圖2,連結(jié)AF ,證明AF平分∠BFE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小區(qū)改善生態(tài)環(huán)境,實(shí)行生活垃圾的分類處理,將生活垃圾分成三類:廚房垃圾、可回收垃圾和其他垃圾,分別記為m,n,p,并且設(shè)置了相應(yīng)的垃圾箱,“廚房垃圾”箱,“可回收垃圾”箱和“其他垃圾”箱,分別記為A,B,C.

(1)若將三類垃圾隨機(jī)投入三類垃圾箱,請(qǐng)用畫樹狀圖的方法求垃圾投放正確的概率;

(2)為了了解居民生活垃圾分類投放的情況,現(xiàn)隨機(jī)抽取了小區(qū)三類垃圾箱中總共1 000噸生活垃圾,數(shù)據(jù)統(tǒng)計(jì)如下(單位:噸):

A

B

C

m

400

100

100

n

30

240

30

p

20

20

60

請(qǐng)根據(jù)以上信息,試估計(jì)“廚房垃圾”投放正確的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)習(xí)小組做“用頻率估計(jì)概率”的實(shí)驗(yàn)時(shí),統(tǒng)計(jì)了某一結(jié)果出現(xiàn)的頻率,繪制了如下折線統(tǒng)計(jì)圖,則符合這一結(jié)果的實(shí)驗(yàn)最有可能的是( 。

A. 袋中裝有大小和質(zhì)地都相同的3個(gè)紅球和2個(gè)黃球,從中隨機(jī)取一個(gè),取到紅球

B. 擲一枚質(zhì)地均勻的正六面體骰子,向上的面的點(diǎn)數(shù)是偶數(shù)

C. 先后兩次擲一枚質(zhì)地均勻的硬幣,兩次都出現(xiàn)反面

D. 先后兩次擲一枚質(zhì)地均勻的正六面體骰子,兩次向上的面的點(diǎn)數(shù)之和是7或超過(guò)9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直角坐標(biāo)系中,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中,C點(diǎn)坐標(biāo)為(1,2).

(1)寫出點(diǎn)A、B的坐標(biāo);

(2)將△ABC先向左平移2個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得到△A′B′C′,寫出A′B′C′的三個(gè)頂點(diǎn)坐標(biāo);

(3)△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案