【題目】如圖,已知函數(shù)yx+1yax+3的圖象交于點(diǎn)P,點(diǎn)P的橫坐標(biāo)為1

1)關(guān)于x,y的方程組 的解是   ;

2a   

3)求出函數(shù)yx+1yax+3的圖象與x軸圍成的幾何圖形的面積.

【答案】(1);(2)-1;(3)4

【解析】

1)先求出點(diǎn)P12),再把P點(diǎn)代入解析式即可解答.

2)把P1,2)代入yax+3,即可解答.

3)根據(jù)yx+1x軸的交點(diǎn)為(﹣1,0),y=﹣x+3x軸的交點(diǎn)為(3,0),即可得到這兩個(gè)交點(diǎn)之間的距離,再根據(jù)三角形的面積公式,即可解答.

1)把x1代入yx+1,得出y2

函數(shù)yx+1yax+3的圖象交于點(diǎn)P1,2),

x1,y2同時(shí)滿足兩個(gè)一次函數(shù)的解析式.

所以關(guān)于x,y的方程組 的解是

故答案為;

2)把P12)代入yax+3,

2a+3,解得a=﹣1

故答案為﹣1;

3)∵函數(shù)yx+1x軸的交點(diǎn)為(﹣10),

y=﹣x+3x軸的交點(diǎn)為(30),

∴這兩個(gè)交點(diǎn)之間的距離為3﹣(﹣1)=4,

P1,2),

∴函數(shù)yx+1yax+3的圖象與x軸圍成的幾何圖形的面積為:×4×24

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】目前節(jié)能燈在城市已基本普及,今年山東省面向縣級(jí)及農(nóng)村地區(qū)推廣節(jié)能燈,為響應(yīng)號(hào)召,某商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種節(jié)能燈共1200只,這兩種節(jié)能燈的進(jìn)價(jià)、售價(jià)如下表:

進(jìn)價(jià)(/)

售價(jià)(/)

25

30

45

60

(1)如何進(jìn)貨,進(jìn)貨款恰好為46000元?

(2)如何進(jìn)貨,商場(chǎng)銷售完節(jié)能燈時(shí)獲利最多且不超過(guò)進(jìn)貨價(jià)的30%,此時(shí)利潤(rùn)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《代數(shù)學(xué)》中記載,形如x2+10x=39的方程,求正數(shù)解的幾何方法是:“如圖1,先構(gòu)造一個(gè)面積為x2的正方形,再以正方形的邊長(zhǎng)為一邊向外構(gòu)造四個(gè)面積為x的矩形,得到大正方形的面積為39+25=64,則該方程的正數(shù)解為8-5=3”,小聰按此方法解關(guān)于x的方程x2+6x+m=0時(shí),構(gòu)造出如圖2所示的圖形,己知陰影部分的面積為36,則該方程的正數(shù)解為( )

A.6B.3-3C.3-2D.3-

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人進(jìn)行比賽的路程與時(shí)間的關(guān)系如圖所示.

(1)這是一場(chǎng)________米比賽;

(2)前一半賽程內(nèi)________的速度較快,最終________贏得了比賽;

(3)兩人第________秒在途中相遇,相遇時(shí)距終點(diǎn)________米;

(4)甲在前8秒的平均速度是多少?甲在整個(gè)賽程的平均速度是多少?乙在前8秒的平均速度是多少?乙在整個(gè)賽程的平均速度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】.如圖,在平面直角坐標(biāo)系xOy,直線y=kx+b(k0)與雙曲線相交于點(diǎn)A(m,3),B(-6,n),x軸交于點(diǎn)C.

(1)求直線y=kx+b(k0)的解析式;

(2)若點(diǎn)Px軸上,SACP=SBOC,求點(diǎn)P的坐標(biāo)(直接寫(xiě)出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)國(guó)家的“節(jié)能減排”政策,某廠家開(kāi)發(fā)了一種新型的電動(dòng)車,如圖,它的大燈A射出的光線AB、AC與地面MN的夾角分別為22°和31°,AT⊥MN,垂足為T(mén),大燈照亮地面的寬度BC的長(zhǎng)為m.

1)求BT的長(zhǎng)(不考慮其他因素).

(2)一般正常人從發(fā)現(xiàn)危險(xiǎn)到做出剎車動(dòng)作的反應(yīng)時(shí)間是0.2s,從發(fā)現(xiàn)危險(xiǎn)到電動(dòng)車完全停下所行駛的距離叫做最小安全距離.某人以20km/h的速度駕駛該車,從做出剎車動(dòng)作到電動(dòng)車停止的剎車距離是,請(qǐng)判斷該車大燈的設(shè)計(jì)是否能滿足最小安全距離的要求(大燈與前輪前端間水平距離忽略不計(jì)),并說(shuō)明理由.

(參考數(shù)據(jù):sin22°,tan22°,sin31°,tan31°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,一個(gè)點(diǎn)從數(shù)軸上的原點(diǎn)開(kāi)始,先向右移動(dòng)3個(gè)單位長(zhǎng)度,再向左移動(dòng)5個(gè)單位長(zhǎng)度,可以看到終點(diǎn)表示的數(shù)是-2,已知點(diǎn)A,B是數(shù)軸上的點(diǎn),請(qǐng)參照?qǐng)D并思考,完成下列各題.

(1)如果點(diǎn)A表示數(shù)-3,將點(diǎn)A向右移動(dòng)7個(gè)單位長(zhǎng)度,那么終點(diǎn)B表示的數(shù)是_____,A,B兩點(diǎn)間的距離是_____;

(2)如果點(diǎn)A表示數(shù)3,將A點(diǎn)向左移動(dòng)7個(gè)單位長(zhǎng)度,再向右移動(dòng)5個(gè)單位長(zhǎng)度,那么終點(diǎn)表示的數(shù)是_____,A,B兩點(diǎn)間的距離為_____;

(3)如果點(diǎn)A表示數(shù)-4,將A點(diǎn)向右移動(dòng)168個(gè)單位長(zhǎng)度,再向左移動(dòng)256個(gè)單位長(zhǎng)度,那么終點(diǎn)B表示的數(shù)是_____,A、B兩點(diǎn)間的距離是_____;

(4)一般地,如果A點(diǎn)表示的數(shù)為m,將A點(diǎn)向右移動(dòng)n個(gè)單位長(zhǎng)度,再向左移動(dòng)p個(gè)單位長(zhǎng)度,那么請(qǐng)你猜想終點(diǎn)B表示什么數(shù)?A,B兩點(diǎn)間的距離為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)某一個(gè)函數(shù)給出如下定義:若存在實(shí)數(shù)M0,對(duì)于任意的函數(shù)值y,都滿足﹣M≤y≤M,則稱這個(gè)函數(shù)是有界函數(shù),在所有滿足條件的M中,其最小值稱為這個(gè)函數(shù)的邊界值.例如,如圖中的函數(shù)是有界函數(shù),其邊界值是1

1)分別判斷函數(shù) y=x0)和y=x+1﹣4≤x≤2)是不是有界函數(shù)?若是有界函數(shù),求其邊界值;

2)若函數(shù)y=﹣x+1a≤x≤b,ba)的邊界值是2,且這個(gè)函數(shù)的最大值也是2,求b的取值范圍;

3)將函數(shù) y=x2﹣1≤x≤m,m≥0)的圖象向下平移m個(gè)單位,得到的函數(shù)的邊界值是t,當(dāng)m在什么范圍時(shí),滿足≤t≤1?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖(1)在RtΔABC中,∠ACB=900,∠B=600,在圖中作出∠ACB的三等分線CD,CE.(要求:尺規(guī)作圖,保留痕跡,不定作法)

(2)由(1)知,我們可以用尺規(guī)作出直角的三等分線,但是僅僅使用尺規(guī)卻不能把任意一個(gè)角分成三等分,為此,人們發(fā)明了許多等分角的機(jī)械器具,如圖(2)是用三張硬紙片自制的一個(gè)最簡(jiǎn)單的三分角器,與半圓O相接的AB帶的長(zhǎng)度與半圓的半徑相等:BD帶的長(zhǎng)度任意,它的一邊與直線AC形成一個(gè)直角,且志半圓相切于點(diǎn)B,假設(shè)需要將∠KSM三等分,如圖(3),首先將角的頂點(diǎn)S置于BD上,角的一邊SK經(jīng)過(guò)點(diǎn)A,另一邊SM與半圓相切,連接SO,則SB,SO為∠KSM的三等分線,請(qǐng)你證明。

圖(1) 圖(2) 圖(3)

查看答案和解析>>

同步練習(xí)冊(cè)答案