【題目】如圖,四邊形中的三個(gè)頂點(diǎn)在⊙上,是優(yōu)弧上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)、重合).
(1)當(dāng)圓心在內(nèi)部,時(shí),________.
(2)當(dāng)圓心在內(nèi)部,四邊形為平行四邊形時(shí),求的度數(shù);
(3)當(dāng)圓心在外部,四邊形為平行四邊形時(shí),請(qǐng)直接寫出與的數(shù)量關(guān)系.
【答案】120
【解析】試題分析:(1)連接OA,如圖1,根據(jù)等腰三角形的性質(zhì)得∠OAB=∠ABO,∠OAD=∠ADO,則∠OAB+∠OAD=∠ABO+∠ADO=60°,然后根據(jù)圓周角定理易得∠BOD=2∠BAD=120°;
(2)根據(jù)平行四邊形的性質(zhì)得∠BOD=∠BCD,再根據(jù)圓周角定理得∠BOD=2∠A,則∠BCD=2∠A,然后根據(jù)圓內(nèi)接四邊形的性質(zhì)由∠BCD+∠A=180°,易計(jì)算出∠A的度數(shù);
(3)討論:當(dāng)∠OAB比∠ODA小時(shí),如圖2,與(1)一樣∠OAB=∠ABO,∠OAD=∠ADO,則∠OAD-∠OAB=∠ADO-∠ABO=∠BAD,由(2)得∠BAD=60°,
所以∠ADO-∠ABO=60°;當(dāng)∠OAB比∠ODA大時(shí),用樣方法得到∠ABO-∠ADO=60°.
解: (1)連接OA,如圖1,
∵OA=OB,OA=OD,
∵∠OAB=∠ABO,∠OAD=∠ADO,
∴∠OAB+∠OAD=∠ABO+∠ADO=60°,即∠BAD=60°,
∴∠BOD=2∠BAD=120°;
故答案為120°;
(2)∵四邊形OBCD為平行四邊形,
∴∠BOD=∠BCD,
∵∠BOD=2∠A,
∴∠BCD=2∠A,
∵∠BCD+∠A=180°,即3∠A=180°,
∴∠A=60°;
(3)當(dāng)∠OAB比∠ODA小時(shí),如圖2,
∵OA=OB,OA=OD,
∵∠OAB=∠ABO,∠OAD=∠ADO,
∴∠OAD∠OAB=∠ADO∠ABO=∠BAD,
由(2)得∠BAD=60°,
∴∠ADO∠ABO=60°;
當(dāng)∠OAB比∠ODA大時(shí),
同理可得∠ABO∠ADO=60°,
綜上所述,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于的一元二次方程的實(shí)數(shù)解是和.
(1)求的取值范圍;
(2)如果且為整數(shù),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在社會(huì)主義新農(nóng)村建設(shè)中,衢州某鄉(xiāng)鎮(zhèn)決定對(duì)A、B兩村之間的公路進(jìn)行改造,并有甲工程隊(duì)從A村向B村方向修筑,乙工程隊(duì)從B村向A村方向修筑.已知甲工程隊(duì)先施工3天,乙工程隊(duì)再開(kāi)始施工.乙工程隊(duì)施工幾天后因另有任務(wù)提前離開(kāi),余下的任務(wù)有甲工程隊(duì)單獨(dú)完成,直到公路修通.下圖是甲乙兩個(gè)工程隊(duì)修公路的長(zhǎng)度y(米)與施工時(shí)間x(天)之間的函數(shù)圖象,請(qǐng)根據(jù)圖象所提供的信息解答下列問(wèn)題:
(1)乙工程隊(duì)每天修公路多少米?
(2)分別求甲、乙工程隊(duì)修公路的長(zhǎng)度y(米)與施工時(shí)間x(天)之間的函數(shù)關(guān)系式.
(3)若該項(xiàng)工程由甲、乙兩工程隊(duì)一直合作施工,需幾天完成?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=6cm,AD=8cm,點(diǎn)P從點(diǎn)B出發(fā),沿對(duì)角線BD向點(diǎn)D勻速運(yùn)動(dòng),速度為4cm/s,過(guò)點(diǎn)P作PQ⊥BD交BC于點(diǎn)Q,以PQ為一邊作正方形PQMN,使得點(diǎn)N落在射線PD上,點(diǎn)O從點(diǎn)D出發(fā),沿DC向點(diǎn)C勻速運(yùn)動(dòng),速度為3cm/s,以O(shè)為圓心,0.8cm為半徑作⊙O,點(diǎn)P與點(diǎn)O同時(shí)出發(fā),設(shè)它們的運(yùn)動(dòng)時(shí)間為t(單 位:s)(0<t<)。
(1)如圖1,連接DQ平分∠BDC時(shí),t的值為 ;
(2)如圖2,連接CM,若△CMQ是以CQ為底的等腰三角形,求t的值;
(3)請(qǐng)你繼續(xù)進(jìn)行探究,并解答下列問(wèn)題:
①證明:在運(yùn)動(dòng)過(guò)程中,點(diǎn)O始終在QM所在直線的左側(cè);
②如圖3,在運(yùn)動(dòng)過(guò)程中,當(dāng)QM與⊙O相切時(shí),求t的值;并判斷此時(shí)PM與⊙O是否也相切?說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,點(diǎn)是第一象限內(nèi)的點(diǎn),直線交軸于點(diǎn),交軸負(fù)半軸于點(diǎn).連接,.
(1)求的面積;
(2)求點(diǎn)的坐標(biāo)和的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,是的中點(diǎn),以為直徑的⊙交的邊于點(diǎn)、、.
(1)求證:四邊形是平行四邊形;
(2)若,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下列四項(xiàng)調(diào)查中,方式正確的是
A. 了解本市中學(xué)生每天學(xué)習(xí)所用的時(shí)間,采用全面調(diào)查的方式
B. 為保證運(yùn)載火箭的成功發(fā)射,對(duì)其所有的零部件采用抽樣調(diào)查的方式
C. 了解某市每天的流動(dòng)人口數(shù),采用全面調(diào)查的方式
D. 了解全市中學(xué)生的視力情況,采用抽樣調(diào)查的方式
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校七(1)班學(xué)生為了解某小區(qū)家庭月均用水情況,隨機(jī)調(diào)查了該小區(qū)部分家庭,并將調(diào)查數(shù)據(jù)進(jìn)行如下整理,已知該小區(qū)用水量不超過(guò)的家庭占被調(diào)查家庭總數(shù)的百分比為12%,請(qǐng)根據(jù)以上信息解答下列問(wèn)題:
級(jí)別 | ||||||
月均用水量 | ||||||
頻數(shù)(戶) | 6 | 12 | 10 | 4 | 2 |
(1)本次調(diào)查采用的方式是 (填“普查”或“抽樣調(diào)查”),樣本容量是 ;
(2)補(bǔ)全頻率分布直方圖;
(3)若將調(diào)查數(shù)據(jù)繪制成扇形統(tǒng)計(jì)圖,則月均用水量“”的圓心角度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲口袋中放有3個(gè)紅球和5個(gè)白球,乙口袋中放有7個(gè)紅球和9個(gè)白球,所有球除顏色外都相同.充分?jǐn)噭騼蓚(gè)口袋,分別從兩個(gè)口袋中任意摸出一個(gè)球,設(shè)從甲中摸出紅球的概率是(紅),從乙中摸出紅球的概率是(紅).
(1)求(紅)與(紅)的值,并比較它們的大。
(2)將甲、乙兩個(gè)口袋的球都倒入丙口袋,充分?jǐn)噭蚝,設(shè)從丙中任意摸出一球是紅球的概率為(紅).小明認(rèn)為:(紅)(紅)(紅).他的想法正確嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com