【題目】一天晚上,小麗和小華在廣場上散步,看見廣場上有一路燈桿(如圖),愛動(dòng)腦筋的小麗和小華想利用投影知識來測量路燈桿的高度.請看下面的一段對話.

小麗:小華,你站在點(diǎn)處,我量得你的影長4m;然后你再沿著直線走到點(diǎn)處,又量得6m,此時(shí)你的影長也是6m

小華:昨天體檢時(shí),醫(yī)生說我的身高是1.6m

請你根據(jù)她們的對話及示意圖,求出路燈桿的高度

【答案】路燈桿的高度為6.4m

【解析】

根據(jù)ABBH,CDBH,FGBH,可得:ABE∽△CDE,則有,而 ,即,從而求出BD的長,再代入前面任意一個(gè)等式中,即可求出AB

根據(jù)題意,得,,

中,

,,∴,

,∴.①

同理,在中,.②

又∵,,,

,

解得,將代入①,

,解得

經(jīng)檢驗(yàn),,是原分式方程的解.

答:路燈桿的高度為6.4m

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖Rt△ABC,ACB=90°,DCEABC繞著點(diǎn)C順時(shí)針方向旋轉(zhuǎn)得到的,此時(shí)B、C、E在同一直線上

1)旋轉(zhuǎn)角的大小;

2)若AB=10,AC=8BE的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正六邊形ABCDEF中,對角線AEBF相交于點(diǎn)M,BDCE相交于點(diǎn)N.

(1)求證:AE=FB;

(2)在不添加任何輔助線的情況下,請直接寫出所有與△ABM全等的三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)的圖象如圖所示,對稱軸是直線.下列結(jié)論:①;②;③;④(為實(shí)數(shù)).其中結(jié)論正確的個(gè)數(shù)為( )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在畫二次函數(shù)的圖象時(shí),甲寫錯(cuò)了一次項(xiàng)的系數(shù),列表如下

……

1

0

1

2

3

……

……

6

3

2

3

6

……

乙寫錯(cuò)了常數(shù)項(xiàng),列表如下:

……

1

0

1

2

3

……

……

2

1

2

7

14

……

通過上述信息,解決以下問題:

(1)求原二次函數(shù)的表達(dá)式;

(2)對于二次函數(shù),當(dāng)_____時(shí),的值隨的值增大而增大;

(3)若關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以邊上一點(diǎn)為圓心的圓,經(jīng)過,兩點(diǎn),且與邊交于點(diǎn),為弧的中點(diǎn),連接,連接.

1)求證:的切線;

2)已知的半徑,,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】□ABCD中,E、F是對角線BD上不同的兩點(diǎn),下列條件中,不能得出四邊形AECF一定為平行四邊形的是(

A. BE=DF B. AE=CF C. AF//CE D. BAE=DCF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018年非洲豬瘟疫情暴發(fā)后,今年豬肉價(jià)格不斷走高,引起了民眾與政府的高度關(guān)注,據(jù)統(tǒng)計(jì):今年720日豬肉價(jià)格比今年年初上漲了60%,某市民今年720日在某超市購買1千克豬肉花了80元錢.

1)問:今年年初豬肉的價(jià)格為每千克多少元?

2)某超市將進(jìn)貨價(jià)為每千克65元的豬肉,按720日價(jià)格出售,平均一天能銷售出100千克,經(jīng)調(diào)查表明:豬肉的售價(jià)每千克下降1元,其日銷售量就增加10千克,超市為了實(shí)現(xiàn)銷售豬內(nèi)每天有1560元的利潤,并且可能讓顧客得到實(shí)惠,豬肉的售價(jià)應(yīng)該下降多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy(如圖)中,拋物線yax2+bx+2經(jīng)過點(diǎn)A40)、B2,2),與y軸的交點(diǎn)為C

1)試求這個(gè)拋物線的表達(dá)式;

2)如果這個(gè)拋物線的頂點(diǎn)為M,求AMC的面積;

3)如果這個(gè)拋物線的對稱軸與直線BC交于點(diǎn)D,點(diǎn)E在線段AB上,且∠DOE45°,求點(diǎn)E的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案