【題目】如圖,在ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對角線,過點(diǎn)A作AG∥DB交CB的延長線于點(diǎn)G.
(1)求證:DE∥BF;
(2)若∠G=90°,求證:四邊形DEBF是菱形.

【答案】
(1)證明:∵四邊形ABCD是平行四邊形,

∴AB∥CD,AB=CD.

∵點(diǎn)E、F分別是AB、CD的中點(diǎn),

∴BE= AB,DF= CD.

∴BE=DF,BE∥DF,

∴四邊形DFBE是平行四邊形,

∴DE∥BF;


(2)證明:∵∠G=90°,AG∥BD,AD∥BG,

∴四邊形AGBD是矩形,

∴∠ADB=90°,

在Rt△ADB中

∵E為AB的中點(diǎn),

∴AE=BE=DE,

∵四邊形DFBE是平行四邊形,

∴四邊形DEBF是菱形.


【解析】(1)根據(jù)已知條件證明BE=DF,BE∥DF,從而得出四邊形DFBE是平行四邊形,即可證明DE∥BF,(2)先證明DE=BE,再根據(jù)鄰邊相等的平行四邊形是菱形,從而得出結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+4的圖象與x軸交于點(diǎn)B(-2,0),點(diǎn)C(8,0),與y軸交于點(diǎn)A.

(1)求二次函數(shù)y=ax2+bx+4的表達(dá)式;

(2)連接AC,AB,若點(diǎn)N在線段BC上運(yùn)動(不與點(diǎn)B,C重合),過點(diǎn)N作NMAC,交AB于點(diǎn)M,當(dāng)AMN面積最大時,求N點(diǎn)的坐標(biāo);

(3)連接OM,在(2)的結(jié)論下,求OM與AC的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中華文明,源遠(yuǎn)流長;中華漢字,寓意深廣.為傳承中華優(yōu)秀傳統(tǒng)文化,某校團(tuán)委組織了一次全校3000名學(xué)生參加的“漢字聽寫”大賽.為了解本次大賽的成績,校團(tuán)委隨機(jī)抽取了其中200名學(xué)生的成績作為樣本進(jìn)行統(tǒng)計(jì),制成如下不完整的統(tǒng)計(jì)圖表:

根據(jù)所給信息,解答下列問題:

(1)m= ,n= ;

(2)補(bǔ)全頻數(shù)分布直方圖;

(3)這200名學(xué)生成績的中位數(shù)會落在 分?jǐn)?shù)段;

(4)若成績在90分以上(包括90分)為“優(yōu)”等,請你估計(jì)該校參加本次比賽的3000名學(xué)生中成績是“優(yōu)”等的約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AN是M的直徑,NBx軸,AB交M于點(diǎn)C.

(1)若點(diǎn)A(0,6),N(0,2),ABN=30°,求點(diǎn)B的坐標(biāo);

(2)若D為線段NB的中點(diǎn),求證:直線CD是M的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】購買1個單價為a元的面包和3瓶單價為b元的飲料,所需錢數(shù)為( 。
A.(a+b)元
B.3(a+b)元
C.(3a+b)元
D.(a+3b)元

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人勻速從同一地點(diǎn)到1500米處的圖書館看書,甲出發(fā)5分鐘后,乙以50米/分的速度沿同一路線行走.設(shè)甲、乙兩人相距s(米),甲行走的時間為t(分),s關(guān)于t的函數(shù)圖象的一部分如圖所示.
(1)求甲行走的速度;
(2)在坐標(biāo)系中,補(bǔ)畫s關(guān)于t的函數(shù)圖象的其余部分;
(3)問甲、乙兩人何時相距360米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=k1x+b與反比例函數(shù)y=的圖象交于第一象限內(nèi)的P(,8),Q(4,m)兩點(diǎn),與x軸交于A點(diǎn).

(1)分別求出這兩個函數(shù)的表達(dá)式;

(2)寫出點(diǎn)P關(guān)于原點(diǎn)的對稱點(diǎn)P'的坐標(biāo);

(3)求P'AO的正弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角三角形中,若一個銳角為35°,則另一個銳角為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列等式中,正確的是(  )
A.3a﹣2a=1
B.a2a3=a5
C.(﹣2a32=﹣4a6
D.(a﹣b)2=a2﹣b2

查看答案和解析>>

同步練習(xí)冊答案