【題目】如圖,在直角梯形ABCD中,AD∥BC, ,AD=6,BC=8, ,點(diǎn)M是BC的中點(diǎn).點(diǎn)P從點(diǎn)M出發(fā)沿MB以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)B勻速運(yùn)動(dòng),到達(dá)點(diǎn)B后立刻以原速度沿BM返回;點(diǎn)Q從點(diǎn)M出發(fā)以每秒1個(gè)單位長(zhǎng)的速度在射線MC上勻速運(yùn)動(dòng).在點(diǎn)P,Q的運(yùn)動(dòng)過(guò)程中,以PQ為邊作等邊三角形EPQ,使它與梯形ABCD在射線BC的同側(cè).點(diǎn)P,Q同時(shí)出發(fā),當(dāng)點(diǎn)P返回到點(diǎn)M時(shí)停止運(yùn)動(dòng),點(diǎn)Q也隨之停止.設(shè)點(diǎn)P,Q運(yùn)動(dòng)的時(shí)間是t秒(t>0).
(1)設(shè)PQ的長(zhǎng)為y,在點(diǎn)P從點(diǎn)M向點(diǎn)B運(yùn)動(dòng)的過(guò)程中,寫(xiě)出y與t之間的函數(shù)關(guān)系式(不必寫(xiě)t的取值范圍).
(2)當(dāng)BP=1時(shí),求△EPQ與梯形ABCD重疊部分的面積.
(3)隨著時(shí)間t的變化,線段AD會(huì)有一部分被△EPQ覆蓋,被覆蓋線段的長(zhǎng)度在某個(gè)時(shí)刻會(huì)達(dá)到最大值,請(qǐng)回答:該最大值能否持續(xù)一個(gè)時(shí)段?若能,直接寫(xiě)出t的取值范圍;若不能,請(qǐng)說(shuō)明理由.
【答案】
(1)解:y=2t
(2)解:當(dāng)BP=1時(shí),有兩種情形:
①如圖6,若點(diǎn)P從點(diǎn)M向點(diǎn)B運(yùn)動(dòng),有MB= =4,MP=MQ=3,
∴PQ=6.連接EM,
∵△EPQ是等邊三角形,∴EM⊥PQ.∴ .
∵AB= ,∴點(diǎn)E在AD上.
∴△EPQ與梯形ABCD重疊部分就是△EPQ,其面積為 .
②若點(diǎn)P從點(diǎn)B向點(diǎn)M運(yùn)動(dòng),由題意得 .
PQ=BM+MQ BP=8,PC=7.設(shè)PE與AD交于點(diǎn)F,QE與AD或AD的
延長(zhǎng)線交于點(diǎn)G,過(guò)點(diǎn)P作PH⊥AD于點(diǎn)H,則
HP= ,AH=1.在Rt△HPF中,∠HPF=30°,
∴HF=3,PF=6.∴FG=FE=2.又∵FD=2,
∴點(diǎn)G與點(diǎn)D重合,如圖7.
此時(shí)△EPQ與梯形ABCD的重疊部分就是梯形FPCG,其面積為
(3)解:能.4≤t≤5
【解析】(1)用t的代數(shù)式表示PQ的長(zhǎng),即兩點(diǎn)的路程之和;(2)BP=1可分為兩種情況:P從點(diǎn)M向點(diǎn)B運(yùn)動(dòng);點(diǎn)P從點(diǎn)B向點(diǎn)M運(yùn),重疊部分的面積是三角形或梯形;(3)4秒時(shí),P、Q兩點(diǎn)分別到達(dá)B、C,此時(shí)重疊部分覆蓋AD 的長(zhǎng)度最大,隨著P點(diǎn)的返回,PQ長(zhǎng)度保持不變,這時(shí)EQ與AD的交點(diǎn)G到D的距離為1,因此再過(guò)1秒,G與D重合,再向右運(yùn)動(dòng)時(shí),PQ長(zhǎng)度變短,因此t的范圍為4≤t≤5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,,AC和BD相交于點(diǎn)O,E是CD上一點(diǎn),F是OD上一點(diǎn),且∠1=∠A.
(1)求證:;
(2)若∠BFE=110°,∠A=60°,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某醫(yī)藥研究所開(kāi)發(fā)一種新藥,在做藥效試驗(yàn)時(shí)發(fā)現(xiàn),如果成人按規(guī)定劑量服用,那么服藥后,每毫升血液中含藥量y(μg)隨時(shí)間t(h)的變化圖象如圖所示,根據(jù)圖象回答:
(1)服藥后幾時(shí)血液中含藥量最高?每毫升血液中含多少微克?
(2)在服藥幾時(shí)內(nèi),每毫升血液中含藥量逐漸升高?在服藥幾時(shí)后,每毫升血液中含藥量逐漸下降?
(3)服藥后14 h時(shí),每毫升血液中含藥量是多少微克?
(4)如果每毫升血液中含藥量為4微克及以上時(shí),治療疾病有效,那么有效時(shí)間為幾時(shí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】南縣農(nóng)民一直保持著冬種油菜的習(xí)慣,利用農(nóng)閑冬種一季油菜.南縣農(nóng)業(yè)部門(mén)對(duì)2009年的油菜籽生產(chǎn)成本、市場(chǎng)價(jià)格、種植面積和產(chǎn)量等進(jìn)行了調(diào)查統(tǒng)計(jì),并繪制了如下統(tǒng)計(jì)表與統(tǒng)計(jì)圖:請(qǐng)根據(jù)以上信息解答下列問(wèn)題
(1)種植油菜每畝的種子成本是多少元?
(2)農(nóng)民冬種油菜每畝獲利多少元?
(3)2009年南縣全縣農(nóng)民冬種油菜的總獲利多少元?(結(jié)果用科學(xué)記數(shù)法表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下面的證明,如圖點(diǎn)D,E,F分別是三角形ABC的邊BC,CA,AB上的點(diǎn),DE∥BA,DF∥CA.求證:∠FDE=∠A.
證明:∵DE∥AB,
∴∠FDE=∠ ( )
∵DF∥CA,
∴∠A=∠ ( )
∴∠FDE=∠A( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明從家出發(fā),沿一條直道跑步,經(jīng)過(guò)一段時(shí)間原路返回,剛好在第回到家中.設(shè)小明出發(fā)第時(shí)的速度為,離家的距離為,與之間的函數(shù)關(guān)系如圖所示(圖中的空心圈表示不包含這一點(diǎn)).
(1)小明出發(fā)第時(shí)離家的距離為_(kāi)_____m;
(2)當(dāng)時(shí),求與之間的函數(shù)表達(dá)式;
(3)直接寫(xiě)出與之間的函數(shù)關(guān)系式并畫(huà)出圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中,正確的是( )
A. 不帶根號(hào)的數(shù)不是無(wú)理數(shù)
B. 的立方根是±2
C. 絕對(duì)值等于的實(shí)數(shù)是
D. 每個(gè)實(shí)數(shù)都對(duì)應(yīng)數(shù)軸上一個(gè)點(diǎn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在求的值時(shí),小林發(fā)現(xiàn):從第二個(gè)加數(shù)起每一個(gè)加數(shù)都是前一個(gè)加數(shù)的6倍,于是她設(shè):……①
然后在①式的兩邊都乘以6,得:……②
②-①得,即,所以.
得出答案后,愛(ài)動(dòng)腦筋的小林想:如果把“6”換成字母“a”(a≠0且a≠1),能否求出的值?你的答案是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)y=(2m-3)x+m+2.
(1)若函數(shù)圖像過(guò)原點(diǎn),求m的值;
(2)若函數(shù)圖像過(guò)點(diǎn)(-1,0),求m的值;
(3)若函數(shù)圖像平行于直線y=-x+2求m的值;
(4)若函數(shù)圖像經(jīng)過(guò)第一、二、四象限,求m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com