如圖,二次函數(shù)y=(x-2)2+m的圖象與y軸交于點C,點B是點C關(guān)于該二次函數(shù)圖象的對稱軸對稱的點,已知一次函數(shù)y=kx+b的圖象上的點A(1,0)及B.

(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象,寫出滿足kx+b(x-2)2+m的x的取值范圍.

(1)y=(x-2)2-1,y=x-1;(2)x≤1或x≥4.

解析試題分析:(1)先將點A(1,0)代入y=(x-2)2+m求出m的值,根據(jù)點的對稱性確定B點坐標(biāo),然后根據(jù)待定系數(shù)法求出一次函數(shù)解析式;
(2)根據(jù)圖象和A、B的交點坐標(biāo)可直接求出kx+b≤(x-2)2+m的x的取值范圍.
試題解析:(1)將點A(1,0)代入y=(x-2)2+m得(1-2)2+m=0,解得m=-1,
所以二次函數(shù)解析式為y=(x-2)2-1;
當(dāng)x=0時,y=4-1=3,
所以C點坐標(biāo)為(0,3),
由于C和B關(guān)于對稱軸對稱,而拋物線的對稱軸為直線x=2,
所以B點坐標(biāo)為(4,3),
將A(1,0)、B(4,3)代入y=kx+b得
,解得,
所以一次函數(shù)解析式為y=x-1;
(2)觀察圖像可得x的取值范圍:x≤1或x≥4.
考點: 1.待定系數(shù)法求二次函數(shù)解析式;2.待定系數(shù)法求一次函數(shù)解析式;3.二次函數(shù)與不等式(組).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,這是反映爺爺每天晚飯后從家中出發(fā)去元寶山公園鍛煉的時間與距離之間關(guān)系的一幅圖.

(1)右圖反映的自變量、因變量分別是什么?
(2)爺爺每天從公園返回用多長時間?
(3)爺爺散步時最遠離家多少米?
(4)爺爺在公園鍛煉多長時間?
(5)計算爺爺離家后的2 0分鐘內(nèi)的平均速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知A、B兩地相距300千米,甲、乙兩車同時從A地出發(fā),以各自的速度勻速往返兩地,甲車先到達B地,停留1小時后按原路返回.設(shè)兩車行駛的時間為x小時,離開A地的距離是y千米,如圖是y與x的函數(shù)圖象.
(1)計算甲車的速度為   千米/時,乙車的速度為   千米/時;
(2)幾小時后兩車相遇;
(3)在從開始出發(fā)到兩車相遇的過程中,設(shè)兩車之間的距離為S千米,乙車行駛的時間為t小時,求S與t之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在學(xué)習(xí)三角形中線的知識時,小明了解到:三角形的任意一條中線所在的直線可以把該三角形分為面積相等的兩部分。進而,小明繼續(xù)研究,過四邊形的某一頂點的直線能否將該四邊形平分為面積相等的兩部分?他畫出了如下示意圖(如圖1),得到了符合要求的直線AF.

小明的作圖步驟如下:
第一步:連結(jié)AC;
第二步:過點B作BE//AC交DC的延長線于點E;
第三步:取ED中點F,作直線AF;
則直線AF即為所求.
請參考小明思考問題的方法,解決問題:
如圖2,五邊形ABOCD,各頂點坐標(biāo)為:A(3,4),B(0,2),O(0,0),C(4,0),D(4,2).請你構(gòu)造一條經(jīng)過頂點A的直線,將五邊形ABOCD分為面積相等的兩部分,并求出該直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,一次函數(shù)y=kx+3的圖象分別交x軸、y軸于點C、點D,與反比例函數(shù)的圖象在第四象限相交于點P,并且PA⊥x軸于點A,PB⊥y軸于點B,已知B(0,-6)且SDBP=27.
(1)求上述一次函數(shù)與反比例函數(shù)的表達式;
(2)設(shè)點Q是一次函數(shù)y=kx+3圖象上的一點,且滿足△DOQ的面積是△COD面積的2倍,直接寫出點Q的坐標(biāo).
(3)若反比例函數(shù)的圖象與△ABP總有公共點,直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某公司有甲種原料260kg,乙種原料270kg,計劃用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共40件.生產(chǎn)每件A種產(chǎn)品需甲種原料8kg,乙種原料5kg,可獲利潤900元;生產(chǎn)每件B種產(chǎn)品需甲種原料4kg,乙種原料9kg,可獲利潤1100元.設(shè)安排生產(chǎn)A種產(chǎn)品x件.
(1)完成下表

 
甲(kg)
乙(kg)
件數(shù)(件)
A
 
5x
x
B
4(40-x)
 
40-x
(2)安排生產(chǎn)A、B兩種產(chǎn)品的件數(shù)有幾種方案?試說明理由;
(3)設(shè)生產(chǎn)這批40件產(chǎn)品共可獲利潤y元,將y表示為x的函數(shù),并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知直線y=-2x+4與x軸交于A點,與y軸交于B點.
(1)求A、B兩點的坐標(biāo);
(2)求直線y=-2x+4與坐標(biāo)軸圍成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知一次函數(shù)y=kx+b的圖象經(jīng)過點A(0,-1),B(1,0),求這個一次函數(shù)的表達式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

我市化工園區(qū)一化工廠,組織20輛汽車裝運A、B、C三種化學(xué)物資共200噸到某地.按計劃20輛汽車都要裝運,每輛汽車只能裝運同一種物資且必須裝滿.請結(jié)合表中提供的信息,解答下列問題:
(1)設(shè)裝運A種物資的車輛數(shù)為x,裝運B種物資的車輛數(shù)為y.求y與x的函數(shù)關(guān)系式;
(2)如果裝運A種物資的車輛數(shù)不少于5輛,裝運B種物資的車輛數(shù)不少于4輛,那么車輛的安排有幾種方案?并寫出每種安排方案;
(3)在(2)的條件下,若要求總運費最少,應(yīng)采用哪種安排方案?請求出最少總運費.

物資種類
A
B
C
每輛汽車運載量(噸)
12
10
8
每噸所需運費(元/噸)
240
320
200
 

查看答案和解析>>

同步練習(xí)冊答案