在下列方程中,與方程5x3y27構(gòu)成方程組,其解是則這個方程是

[  ]

A.4x6y=-6

B.4x7y40

C.2x3y13

D.5x2y10

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

我們知道|x|的幾何意義是在數(shù)軸上數(shù)x對應(yīng)的點與原點的距離,即|x|=|x-0|,也就是說|x|表示在數(shù)軸上數(shù)x與數(shù)0對應(yīng)點之間的距離;這個結(jié)論可以推廣為:|x-y|表示在數(shù)軸上數(shù)x、y對應(yīng)點之間的距離;在解題中,我們常常運(yùn)用絕對值的幾何意義.
①解方程|x|=2,容易看出,在數(shù)軸上與原點距離為2的點對應(yīng)的數(shù)為±2,即該方程的解為x=±2.
②在方程|x-1|=2中,x的值就是數(shù)軸上到1的距離為2的點對應(yīng)的數(shù),顯然x=3或x=-1.
③在方程|x-1|+|x+2|=5中,顯然該方程表示數(shù)軸上與1和-2的距離之和為5 的點對應(yīng)的x值,在數(shù)軸上1和-2的距離為3,滿足方程的x的對應(yīng)點在1的右邊或-2的左邊.若x的對應(yīng)點在1的右邊,由圖示可知,x=2;同理,若x的對應(yīng)點在-2的左邊,可得x=-3,所以原方程的解是x=2或x=-3.根據(jù)上面的閱讀材料,解答下列問題:
(1)方程|x|=5的解是
x=±5
x=±5

(2)方程|x-2|=3的解是
x=5或-1
x=5或-1

(3)畫出圖示,解方程|x-3|+|x+2|=9.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011~2012年重慶萬州區(qū)巖口復(fù)興學(xué)校七年級下期中考試數(shù)學(xué)試卷(帶解析) 題型:解答題

閱讀下列材料,然后解答后面的問題。
我們知道方程有無數(shù)組解,但在實際生活中我們往往只需要求出其正整數(shù)解。例:由,得,(為正整數(shù))       則有.
為正整數(shù),則為正整數(shù).
由2與3互質(zhì),可知:為3的倍數(shù),從而,代入.
的正整數(shù)解為
問題:(1)請你寫出方程的一組正整數(shù)解:            
(2)若為自然數(shù),則滿足條件的值有­            

A.2B.3C.4D.5
(3)七年級某班為了獎勵學(xué)習(xí)進(jìn)步的學(xué)生,購買了單價為3元的筆記本與單價為5元的鋼筆兩種獎品,共花費(fèi)35元,問有幾種購買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012年重慶萬州區(qū)巖口復(fù)興學(xué)校七年級下期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

閱讀下列材料,然后解答后面的問題。

我們知道方程有無數(shù)組解,但在實際生活中我們往往只需要求出其正整數(shù)解。例:由,得,(、為正整數(shù))        則有.

為正整數(shù),則為正整數(shù).

由2與3互質(zhì),可知:為3的倍數(shù),從而,代入.

的正整數(shù)解為

問題:(1)請你寫出方程的一組正整數(shù)解:            

(2)若為自然數(shù),則滿足條件的值有­             

A、2      B、3       C、4        D、5

(3)七年級某班為了獎勵學(xué)習(xí)進(jìn)步的學(xué)生,購買了單價為3元的筆記本與單價為5元的鋼筆兩種獎品,共花費(fèi)35元,問有幾種購買方案?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008年全國中考數(shù)學(xué)試題匯編《不等式與不等式組》(03)(解析版) 題型:解答題

(2008•樂山)閱讀下列材料:
我們知道|x|的幾何意義是在數(shù)軸上數(shù)x對應(yīng)的點與原點的距離;即|x|=|x-0|,也就是說,|x|表示在數(shù)軸上數(shù)x與數(shù)0對應(yīng)點之間的距離;

這個結(jié)論可以推廣為|x1-x2|表示在數(shù)軸上數(shù)x1,x2對應(yīng)點之間的距離;
在解題中,我們會常常運(yùn)用絕對值的幾何意義:
例1:解方程|x|=2.容易得出,在數(shù)軸上與原點距離為2的點對應(yīng)的數(shù)為±2,即該方程的x=±2;
例2:解不等式|x-1|>2.如圖,在數(shù)軸上找出|x-1|=2的解,即到1的距離為2的點對應(yīng)的數(shù)為-1,3,則|x-1|>2的解為x<-1或x>3;
例3:解方程|x-1|+|x+2|=5.由絕對值的幾何意義知,該方程表示求在數(shù)軸上與1和-2的距離之和為5的點對應(yīng)的x的值.在數(shù)軸上,1和-2的距離為3,滿足方程的x對應(yīng)點在1的右邊或-2的左邊.若x對應(yīng)點在1的右邊,如圖可以看出x=2;同理,若x對應(yīng)點在-2的左邊,可得x=-3.故原方程的解是x=2或x=-3.
參考閱讀材料,解答下列問題:
(1)方程|x+3|=4的解為______;
(2)解不等式|x-3|+|x+4|≥9;
(3)若|x-3|-|x+4|≤a對任意的x都成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案