【題目】已知:如圖,在△ABC中,點(diǎn)D,E是邊BC上的兩點(diǎn),且AB=BE,AC=CD.
(1)若∠BAC =90°,求∠DAE的度數(shù);
(2)若∠BAC=120°,直接寫出∠DAE的度數(shù)
(3)設(shè)∠BAC=α,∠DAE=β,猜想α與β的之間數(shù)量關(guān)系(不需證明).
【答案】(1)45°;(2)∠DAE=30°;(3)α+2β=180.
【解析】
(1)由題意得出∠BEA= ,∠CDA =,再在△ADE中
利用內(nèi)角和等于180°即可.
(2)同(1)理可快速得出答案.
(3)綜合(1)(2)可總結(jié)出α與β的之間數(shù)量關(guān)系.
(1)∵AB=BE ,AC=CD
∴∠BEA= ,∠CDA =
在△ADE中
∠DAE=180°∠BEA∠CDA=180°
=(∠B+∠C )=(180°∠BAC )=×(180°90°)=45°
(2)∠DAE=30°
理由:∠DAE=180°∠BEA∠CDA=180°
=(∠B+∠C )=(180°∠BAC )= 30°
(3)α+2β=180
理由:∠DAE=180°∠BEA∠CDA=180°
=(∠B+∠C )=(180°∠BAC )
∠DAE=(180°∠BAC )
α+2β=180.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法,正確的是( )
A. 若ac=bc,則a=b
B. 30.15°=30°15′
C. 一個圓被三條半徑分成面積比2:3:4的三個扇形,則最小扇形的圓心角為90°
D. 鐘表上的時間是9點(diǎn)40分,此時時針與分針?biāo)傻膴A角是50°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)P在BA的延長線上,PD切⊙O于點(diǎn)D,過點(diǎn)B作BE垂直于PD,交PD的延長線于點(diǎn)C,連接AD并延長,交BE于點(diǎn)E.
(1)求證:AB=BE;
(2)若PA=2,cosB= ,求⊙O半徑的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,過對角線AC的中點(diǎn)O作垂線EF交邊BC,AD分別為點(diǎn)E,F,連接AE,CF.
(1)求證:四邊形AECF是菱形;
(2)若AD=8,AB=4,求CF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC三個頂點(diǎn)的坐標(biāo)為A(1,2),B(4,1),C(2,4).
(1)在圖中畫出△ABC關(guān)于y軸對稱的圖形△A’B’C’;
(2)在圖中x軸上作出一點(diǎn)P,使PA+PB的值最小;并寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了節(jié)約用水,某市規(guī)定三口之家每月標(biāo)準(zhǔn)用水量為15立方米,單價為1.5元/立方米,超過部分單價為3元/立方米,某三口之家當(dāng)月用水立方米(且為整數(shù))
⑴.請用正式表示用水立方米的費(fèi)用;
⑵.三口之家當(dāng)月繳水費(fèi)37.50元,這月用了多少立方米的水.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是小明從學(xué)校到家里行進(jìn)的路程s(米)與時間t(分)的函數(shù)圖象.觀察圖象,從中得到如下信息:①學(xué)校離小明家1000米;②小明用了20分鐘到家;③小明前10分鐘走了路程的一半;④小明后10分鐘比前10分鐘走得快,其中正確的有______(填序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E、F分別為邊AB、CD的中點(diǎn),連接DE、BF、BD.
(1)求證:△ADE≌△CBF
(2)當(dāng)AD⊥BD時,請你判斷四邊形BFDE的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們將能完全覆蓋某平面圖形的最小圓稱為該平面圖形的最小覆蓋圓.例如線段 的最小覆蓋圓就是以線段 為直徑的圓.
(1)請分別作出圖①中兩個三角形的最小覆蓋圓(要求用尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)三角形的最小覆蓋圓有何規(guī)律?請直接寫出你所得到的結(jié)論(不要求證明);
(3)某城市有四個小區(qū) (其位置如圖②所示),現(xiàn)擬建一個手機(jī)信號基站,為了使這四個小區(qū)居民的手機(jī)都能有信號,且使基站所需發(fā)射功率最。ň嚯x越小,所需功率越。,此基站應(yīng)建在何處?請寫出你的結(jié)論并說明研究思路.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com