【題目】如圖,在平面直角坐標(biāo)系中,ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A的坐標(biāo)為(2,4).

(1)畫(huà)出ABC關(guān)于x軸對(duì)稱(chēng)的A1B1C1,并寫(xiě)出點(diǎn)A1的坐標(biāo)A1 ________________

(2)畫(huà)出A1B1C1繞原點(diǎn)O旋轉(zhuǎn)180°后得到的A2B2C2,并寫(xiě)出點(diǎn)A2的坐標(biāo)A2__________________

(3) ABC是否為直角三角形?答_________(填是或者不是).

(4)利用格點(diǎn)圖,畫(huà)出BC邊上的高AD,并求出AD的長(zhǎng),AD=_____________.

【答案】 (2.-4) (-2,4) 不是

【解析】試題分析:(1)分別找出A、B、C三點(diǎn)關(guān)于x軸的對(duì)稱(chēng)點(diǎn),再順次連接,然后根據(jù)圖形寫(xiě)出A點(diǎn)坐標(biāo);

(2)將A1B1C1中的各點(diǎn)A1、B1、C1繞原點(diǎn)O旋轉(zhuǎn)180°后,即A2B2C2A1B1C1關(guān)于點(diǎn)O成中心對(duì)稱(chēng),得到相應(yīng)的對(duì)應(yīng)點(diǎn)A2、B2、C2,連接各對(duì)應(yīng)點(diǎn)即得A2B2C2

(3)根據(jù)勾股定理逆定理解答即可;

(4)連接BD,過(guò)點(diǎn)AAHBDBC與點(diǎn)H,然后利用面積法求AH的長(zhǎng)度即可.

解:(1)如圖所示:點(diǎn)A1的坐標(biāo)(2,-4);

(2)如圖所示,點(diǎn)A2的坐標(biāo)(-2,4);

(3)∵AC2=32+12=10, AB2=22+12=5, BC2=42+12=17,

AC2+ AB2 BC2,

ABC不是直角三角形;

(4)連接BD,過(guò)點(diǎn)AAHBDBC與點(diǎn)H.

BB1=BE, ∠BB1D=∠BEC,B1D=CE,

∴△BB1D=△BEC,

∴∠CBE=∠DBB1.

∵∠DBE=∠DBB1=90°,

∴∠DBE=∠CBE =90°,

BDBC,

AHBC.

BC2=42+12=17,

BC=.

SABC=4×2-×2×1-×3×1-×4×1=,

BC·AH=,

AH=7,

AH= .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】八年級(jí)某班同學(xué)為了了解2012年某居委會(huì)家庭月均用水情況,隨機(jī)調(diào)查了該居委會(huì)部分家庭,并將調(diào)查數(shù)據(jù)進(jìn)行如下調(diào)整:

月均用水量x(t)

頻數(shù)(戶)

頻率

0<x≤5

6

 0.12

5<x≤10

a

 0.24

10<x≤15

16

 0.32

15<x≤20

10

 0.20

20<x≤25

4

0.08

25<x≤30

2

 0.04

請(qǐng)解答以下問(wèn)題:

(1)頻數(shù)分布表中a=   ,把頻數(shù)分布直方圖補(bǔ)充完整;

(2)求該居委會(huì)用水量不超過(guò)15t的家庭占被調(diào)查家庭總數(shù)的百分比;

(3)若該居委會(huì)有1000戶家庭,根據(jù)調(diào)查數(shù)據(jù)估計(jì),該小區(qū)月均用水量超過(guò)20t的家庭大約有多少戶?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某市市民“綠色出行”方式的情況,某校數(shù)學(xué)興趣小組以問(wèn)卷調(diào)查的形式,隨機(jī)調(diào)查了某市部分出行市民的主要出行方式(參與問(wèn)卷調(diào)查的市民都只從以下五個(gè)種類(lèi)中選擇一類(lèi)),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.

種類(lèi)

A

B

C

D

E

出行方式

共享單車(chē)

步行

公交車(chē)

的士

私家車(chē)

根據(jù)以上信息,回答下列問(wèn)題:

(1)參與本次問(wèn)卷調(diào)查的市民共有 人,其中選擇B類(lèi)的人數(shù)有 人;

(2)在扇形統(tǒng)計(jì)圖中,求A類(lèi)對(duì)應(yīng)扇形圓心角α的度數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;

(3)該市約有12萬(wàn)人出行,若將A,B,C這三類(lèi)出行方式均視為“綠色出行”方式,請(qǐng)估計(jì)該市“綠色出行”方式的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校需要添置某種教學(xué)儀器,現(xiàn)有兩種添置方法.方案1:到廠商家購(gòu)買(mǎi),每件需要8元和一次性的運(yùn)費(fèi)2000元;方案2:學(xué)校自己制作,每件4元,另外購(gòu)置制作工具的費(fèi)用4200.現(xiàn)所需教學(xué)儀器件數(shù)不明確.

請(qǐng)你給校長(zhǎng)出出主意,選擇哪種方案更節(jié)約費(fèi)用?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過(guò)點(diǎn)O作射線OC,使BOC=120°.將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.

(1)將圖1中的三角板繞點(diǎn)O按每秒10°的速度沿逆時(shí)針?lè)较蛐D(zhuǎn)一周.在旋轉(zhuǎn)的過(guò)程中,假如第t秒時(shí),OA、OC、ON三條射線構(gòu)成相等的角,求此時(shí)t的值為多少?

(2)將圖1中的三角板繞點(diǎn)O順時(shí)針旋轉(zhuǎn)圖2,使ON在AOC的內(nèi)部,請(qǐng)?zhí)骄浚?/span>AOMNOC之間的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,四邊形ABCD是菱形,AD=5,過(guò)點(diǎn)DAB的垂線DH,垂足為H,交對(duì)角線ACM,連接BM,且AH=3

1)求證:DM=BM;

2)求MH的長(zhǎng);

3如圖2,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿折線ABC方向以2個(gè)單位/秒的速度向終點(diǎn)C勻速運(yùn)動(dòng),設(shè)△PMB的面積為SS≠0),點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,求St之間的函數(shù)關(guān)系式;

4)在(3)的條件下,當(dāng)點(diǎn)P在邊AB上運(yùn)動(dòng)時(shí)是否存在這樣的 t值,使∠MPB∠BCD互為余角,若存在,則求出t值,若不存,在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有這樣一道題:計(jì)算(2x3-3x2y-2xy2)-(x3-2xy2y3)+(-x3+3x2yy3)的值,其中x=-,y=-2.甲同學(xué)把x=-錯(cuò)抄成x.但他計(jì)算的結(jié)果是正確的,請(qǐng)你分析這是什么原因.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某食品廠從生產(chǎn)的袋裝食品中抽出樣品20袋,檢測(cè)每袋的質(zhì)量是否符合標(biāo)準(zhǔn),超過(guò)或不足的部分分別用正、負(fù)數(shù)來(lái)表示,記錄如下表:

與標(biāo)準(zhǔn)質(zhì)量的差值
(單位:g

5

2

0

1

3

6

袋 數(shù)

1

4

3

4

5

3

1)這批樣品的平均質(zhì)量比標(biāo)準(zhǔn)質(zhì)量多還是少?多或少幾克?

2)若每袋標(biāo)準(zhǔn)質(zhì)量為450克,則抽樣檢測(cè)的總質(zhì)量是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖一,拋物線y=ax2+bx+c與x軸正半軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,直線y=x﹣2經(jīng)過(guò)A、C兩點(diǎn),且AB=2.

(1)求拋物線的解析式;
(2)若直線DE平行于x軸并從C點(diǎn)開(kāi)始以每秒1個(gè)單位的速度沿y軸正方向平移,且分別交y軸、線段BC于點(diǎn)E,D,同時(shí)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿BO方向以每秒2個(gè)單位速度運(yùn)動(dòng),(如圖2);當(dāng)點(diǎn)P運(yùn)動(dòng)到原點(diǎn)O時(shí),直線DE與點(diǎn)P都停止運(yùn)動(dòng),連DP,若點(diǎn)P運(yùn)動(dòng)時(shí)間為t秒;設(shè)s= ,當(dāng)t為何值時(shí),s有最小值,并求出最小值.
(3)在(2)的條件下,是否存在t的值,使以P、B、D為頂點(diǎn)的三角形與△ABC相似;若存在,求t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案