【題目】如圖,在ABC中,∠ACB90°,點P在∠BCA平分線CD上,且PAPB

1)用尺規(guī)作出符合要求的點P(保留作圖痕跡,不需要寫作法);

2)判斷ABP的形狀(不需要寫證明過程)

【答案】(1)見解析;(2)等腰直角三角形.

【解析】

1)由PA=PB知點P同時還在線段AB的中垂線上,據(jù)此作圖可得;

2)點P分別作PEAC、PFCB,垂足為EF,由全等三角形的判定定理得出RtAPERtBPF,再由全等三角形的性質(zhì)即可判斷出ABP是等腰直角三角形.

1)如圖所示,點P即為所求;

2ABP是等腰直角三角形,

理由如下:過點P分別作PEAC、PFCB,垂足為EF

PC平分∠ACB,PEAC、PFCB,垂足為E、F,

PEPF

RtAPERtBPF中,

,

RtAPERtBPF

∴∠APE=∠BPF,

∵∠PEC90°,∠PFC90°,∠ECF90°,

∴∠EPF90°,

∴∠APB90°

又∵PAPB

∴△ABP是等腰直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組請結(jié)合題意填空,完成本題的解答.

(Ⅰ)解不等式①,得___________;

(Ⅱ)解不等式②,得___________;

(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來:

(Ⅳ)原不等式組的解集為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場進(jìn)行促銷活動,出售一種優(yōu)惠購物卡(注:此卡只作為購物優(yōu)惠憑證不能頂替貨款),花300元買這種卡后,憑卡可在這家商場按標(biāo)價的8折購物.若不夠卡購物和使用優(yōu)惠卡購物分別視為方式一購物和方式二購物,且設(shè)顧客購買商品的金額為元.

(Ⅰ)根據(jù)題意,填寫下表:

商品金額(元)

300

600

1000

方式一的總費用(元)

300

600

1000

方式二的總費用(元)

540

(Ⅱ)顧客購買多少元金額的商品時,買卡與不買卡花錢相等?

(Ⅲ)小張要買一臺標(biāo)價為3500元的冰箱,如何購買合算?小張能節(jié)省多少元錢?

(Ⅳ)小張按合算的方案,把這臺冰箱買下,如果該商場還能盈利,那么這臺冰箱的進(jìn)價是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

我們知道一次函數(shù),是常數(shù))的圖象是一條直線,到高中學(xué)習(xí)時,直線通常寫成 ,是常數(shù))的形式,點到直線的距離可用公式計算.

例如:求點到直線的距離.

解:∵

其中

∴點到直線的距離為:

根據(jù)以上材料解答下列問題:

1)求點到直線的距離;

2)如圖,直線沿軸向上平移2個單位得到另一條直線,求這兩條平行直線之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣5a≠0)與x軸交于點A﹣5,0)和點B30),與y軸交于點C

1)求該拋物線的解析式;

2)若點Ex軸下方拋物線上的一動點,當(dāng)SABE=SABC時,求點E的坐標(biāo);

3)在(2)的條件下,拋物線上是否存在點P,使∠BAP=∠CAE?若存在,求出點P的橫坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某出租公司有若干輛同一型號的貨車對外出租,每輛貨車的日租金實行淡季、旺季兩種價格標(biāo)準(zhǔn),旺季每輛貨車的日租金比淡季上漲.據(jù)統(tǒng)計,淡季該公司平均每天有輛貨車未出租,日租金總收入為元;旺季所有的貨車每天能全部租出,日租金總收入為元.

1)該出租公司這批對外出租的貨車共有多少輛?淡季每輛貨車的日租金多少元?

2)經(jīng)市場調(diào)查發(fā)現(xiàn),在旺季如果每輛貨車的日租金每上漲元,每天租出去的貨車就會減少輛,不考慮其它因素,每輛貨車的日租金上漲多少元時,該出租公司的日租金總收入最高?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E,F分別為BC,CD的中點,連接AE,BF交于點G,將BCF沿BF對折,得到BPF,延長FPBA延長于點Q,下列結(jié)論正確的有( 。﹤.

AEBF;②QBQF;③FGAG;④sinBQP;SECPG3SBGE

A. 5B. 4C. 3D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次海上救援中,兩艘專業(yè)救助船同時收到某事故漁船的求救訊息,已知此時救助船的正北方向,事故漁船在救助船的北偏西30°方向上,在救助船的西南方向上,且事故漁船與救助船相距120海里.

1)求收到求救訊息時事故漁船與救助船之間的距離;

2)若救助船A分別以40海里/小時、30海里/小時的速度同時出發(fā),勻速直線前往事故漁船處搜救,試通過計算判斷哪艘船先到達(dá).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)今,越來越多的青少年在觀看影片《流浪地球》后,更加喜歡同名科幻小說,該小說銷量也急劇上升.書店為滿足廣大顧客需求,訂購該科幻小說若干本,每本進(jìn)價為20元.根據(jù)以往經(jīng)驗:當(dāng)銷售單價是25元時,每天的銷售量是250本;銷售單價每上漲1元,每天的銷售量就減少10本,書店要求每本書的利潤不低于10元且不高于18元.

1)直接寫出書店銷售該科幻小說時每天的銷售量(本)與銷售單價(元)之間的函數(shù)關(guān)系式及自變量的取值范圍.

2)書店決定每銷售1本該科幻小說,就捐贈元給困難職工,每天扣除捐贈后可獲得最大利潤為1960元,求的值.

查看答案和解析>>

同步練習(xí)冊答案