【題目】如圖,順次連接邊長為1的正方形ABCD四邊的中點(diǎn),得到四邊形A1B1C1D1 , 然后順次連接四邊形A1B1C1D1四邊的中點(diǎn),得到四邊形A2B2C2D2 , 再順次連接四邊形A2B2C2D2四邊的中點(diǎn),得到四邊形A3B3C3D3 , …,按此方法得到的四邊形A8B8C8D8的周長為 .
【答案】
【解析】解:順次連接正方形ABCD四邊的中點(diǎn)得正方形A1B1C1D1 , 則得正方形A1B1C1D1的面積為正方形ABCD面積的一半,即 ,則周長是正方形ABCD的 ; 順次連接正方形A1B1C1D1中點(diǎn)得正方形A2B2C2D2 , 則正方形A2B2C2D2的面積為正方形A1B1C1D1面積的一半,即正方形ABCD的 ,則周長是正方形ABCD的 ;
順次連接正方形A2B2C2D2得正方形A3B3C3D3 , 則正方形A3B3C3D3的面積為正方形A2B2C2D2面積的一半,即正方形ABCD的 ,則周長是正方形ABCD的 ;
順次連接正方形A3B3C3D3中點(diǎn)得正方形A4B4C4D4 , 則正方形A4B4C4D4的面積為正方形A3B3C3D3面積的一半,即正方形ABCD的 ,則周長是正方形ABCD的 ;
…
故第n個(gè)正方形周長是原來的 ,
以此類推:正方形A8B8C8D8周長是原來的 ,
∵正方形ABCD的邊長為1,周長為4,
∴按此方法得到的四邊形A8B8C8D8的周長為 ,
所以答案是: .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【問題提出】 學(xué)習(xí)了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我們繼續(xù)對“兩個(gè)三角形滿足兩邊和其中一邊的對角對應(yīng)相等”的情形進(jìn)行研究.
【初步思考】
我們不妨將問題用符號語言表示為:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,對∠B進(jìn)行分類,可分為“∠B是直角、鈍角、銳角”三種情況進(jìn)行探究.
【深入探究】
第一種情況:當(dāng)∠B是直角時(shí),△ABC≌△DEF.
(1)如圖①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根據(jù) , 可以知道Rt△ABC≌Rt△DEF. 第二種情況:當(dāng)∠B是鈍角時(shí),△ABC≌△DEF.
(2)如圖②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是鈍角,求證:△ABC≌△DEF. 第三種情況:當(dāng)∠B是銳角時(shí),△ABC和△DEF不一定全等.
(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,請你用尺規(guī)在圖③中作出△DEF,使△DEF和△ABC不全等.(不寫作法,保留作圖痕跡)
(4)∠B還要滿足什么條件,就可以使△ABC≌△DEF?請直接寫出結(jié)論:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是銳角,若 , 則△ABC≌△DEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市啟動(dòng)了第二屆“美麗港城,美在閱讀”全民閱讀活動(dòng),為了解市民每天的閱讀時(shí)間情況,隨機(jī)抽取了部分市民進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果繪制如下尚不完整的頻數(shù)分布表:
閱讀時(shí)間 | 0≤x<30 | 30≤x<60 | 60≤x<90 | x≥90 | 合計(jì) |
頻數(shù) | 450 | 400 | 50 | ||
頻率 | 0.4 | 0.1 | 1 |
(1)補(bǔ)全表格;
(2)將每天閱讀時(shí)間不低于60min的市民稱為“閱讀愛好者”,若我市約有500萬人,請估計(jì)我市能稱為“閱讀愛好者”的市民約有多少萬人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,四邊形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,且∠A=90°,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司為了解員工對“六五”普法知識的知曉情況,從本公司隨機(jī)選取40名員工進(jìn)行普法知識考查,對考查成績進(jìn)行統(tǒng)計(jì)(成績均為整數(shù),滿分100分),并依據(jù)統(tǒng)計(jì)數(shù)據(jù)繪制了如下尚不完整的統(tǒng)計(jì)表.解答下列問題:
組別 | 分?jǐn)?shù)段/分 | 頻數(shù)/人數(shù) | 頻率 |
1 | 50.5~60.5 | 2 | a |
2 | 60.5~70.5 | 6 | 0.15 |
3 | 70.5~80.5 | b | c |
4 | 80.5~90.5 | 12 | 0.30 |
5 | 90.5~100.5 | 6 | 0.15 |
合計(jì) | 40 | 1.00 |
(1)表中a= , b= , c=;
(2)請補(bǔ)全頻數(shù)分布直方圖;
(3)該公司共有員工3000人,若考查成績80分以上(不含80分)為優(yōu)秀,試估計(jì)該公司員工“六五”普法知識知曉程度達(dá)到優(yōu)秀的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),四邊形OABC是矩形,點(diǎn)A、C的坐標(biāo)分別為A(7,0),C(0,4),點(diǎn)D的坐標(biāo)為(5,0),點(diǎn)P在BC邊上運(yùn)動(dòng). 當(dāng)△ODP是腰長為5的等腰三角形時(shí),點(diǎn)P的坐標(biāo)為______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們用[a]表示不大于a的最大整數(shù),例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3;用<a>表示大于a的最小整數(shù),例如:<2.5>=3,<4>=5,<﹣1.5>=﹣1.解決下列問題:
(1)[﹣4.5]= , <3.5>= .
(2)若[x]=2,則x的取值范圍是;若<y>=﹣1,則y的取值范圍是 .
(3)已知x,y滿足方程組 ,求x,y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直角三角形中,,直線過點(diǎn).
(1)當(dāng)時(shí),如圖1,分別過點(diǎn)和作直線于點(diǎn),直線于點(diǎn).與是否全等,并說明理由;
(2)當(dāng),時(shí),如圖2,點(diǎn)與點(diǎn)關(guān)于直線對稱,連接、.點(diǎn)是上一點(diǎn),點(diǎn)是上一點(diǎn),分別過點(diǎn)、作直線于點(diǎn),直線于點(diǎn),點(diǎn)從點(diǎn)出發(fā),以每秒的速度沿路徑運(yùn)動(dòng),終點(diǎn)為.點(diǎn)從點(diǎn)出發(fā),以每秒的速度沿路徑運(yùn)動(dòng),終點(diǎn)為.點(diǎn)、同時(shí)開始運(yùn)動(dòng),各自達(dá)到相應(yīng)的終點(diǎn)時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒.
①當(dāng)為等腰直角三角形時(shí),求的值;
②當(dāng)與全等時(shí),求的值.
圖1 圖2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com