【題目】直線l:y=﹣x+6y軸于點(diǎn)A,與x軸交于點(diǎn)B,過A、B兩點(diǎn)的拋物線mx軸的另一個(gè)交點(diǎn)為C,(CB的左邊),如果BC=5,求拋物線m的解析式,并根據(jù)函數(shù)圖像指出當(dāng)m的函數(shù)值大于0的函數(shù)值時(shí)x的取值范圍.

【答案】x3x8

【解析】

試題先根據(jù)函數(shù)的解析式求出AB兩點(diǎn)的坐標(biāo),再求出點(diǎn)C的坐標(biāo),利用待定系數(shù)法求出拋物線m的解析式,畫出其圖象,利用數(shù)形結(jié)合即可求解.

試題解析:∵y=﹣x+6y軸于點(diǎn)A,與x軸交于點(diǎn)B

∴x=0時(shí),y=6

∴A0,6),

y=0時(shí),x=8,

∴B8,0),

A、B兩點(diǎn)的拋物線mx軸的另一個(gè)交點(diǎn)為C,(CB的左邊),BC=5

∴C3,0).

設(shè)拋物線m的解析式為y=ax﹣3)(x﹣8),

A0,6)代入,得24a=6,解得a=,

拋物線m的解析式為y=x﹣3)(x﹣8),即y=x2x+6;

函數(shù)圖象如右:

當(dāng)拋物線m的函數(shù)值大于0時(shí),x的取值范圍是x3x8

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A,B在反比例函數(shù)(x>0)的圖象上,點(diǎn)C,D在反比例函數(shù)(k>0)的圖象上,AC∥BD∥y軸,已知點(diǎn)A,B的橫坐標(biāo)分別為1,2,△OAC與△ABD的面積之和為,則k的值為( 。

A. 3 B. 4 C. 2 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:AC是菱形ABCD的對角線,且AC=BC

(1)如圖①,點(diǎn)P是△ABC的一個(gè)動(dòng)點(diǎn),將△ABP繞著點(diǎn)B旋轉(zhuǎn)得到△CBE

①求證:△PBE是等邊三角形;

②若BC=5CE=4,PC=3,求∠PCE的度數(shù);

(2)連結(jié)BDAC于點(diǎn)O,點(diǎn)EOD上且DE=3,AD=4,點(diǎn)G是△ADE內(nèi)的一個(gè)動(dòng)點(diǎn)如圖②,連結(jié)AG,EG,DG,求AG+EG+DG的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,有四個(gè)同樣大小的直角三角形,兩條直角邊分別為a、b,斜邊為c,拼成一個(gè)正方形,中間留有一個(gè)小正方形.

1)利用它們之間的面積關(guān)系,探索出關(guān)于a、b、c的等式;

2)利用(1)中發(fā)現(xiàn)的直角三角形中兩直角邊ab和斜邊c之間的關(guān)系,完成問題:如圖2,在直角△ABC中,∠C90°,且c6,a+b8,則△ABC的面積為   ;

3)如圖3所示,CD是直角△ABC中斜邊上的高,試證明CD2ADBD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E、F分別是邊ABBC的中點(diǎn),連接AF、DE相交于點(diǎn)G,連接CG

1)求證:AF⊥DE;

2)求證:CG=CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形中,點(diǎn)、分別為邊、上兩點(diǎn),,過點(diǎn),且點(diǎn)為邊延長線上一點(diǎn).

1嗎?說明理由.

2)若線段,,求線段的長度.

3)若,,求線段的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).

1)求AB、C的坐標(biāo);

2)點(diǎn)M為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過點(diǎn)Mx軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過點(diǎn)PPQ∥AB交拋物線于點(diǎn)Q,過點(diǎn)QQN⊥x軸于點(diǎn)N.若點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PQMN的周長最大時(shí),求△AEM的面積;

3)在(2)的條件下,當(dāng)矩形PMNQ的周長最大時(shí),連接DQ.過拋物線上一點(diǎn)Fy軸的平行線,與直線AC交于點(diǎn)G(點(diǎn)G在點(diǎn)F的上方).FG=DQ,求點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某項(xiàng)研究表明,大拇指與小拇指盡量張開時(shí),兩指尖的距離稱為指距.如表是測得的指距與身高的一組數(shù)據(jù):

指距dcm

19

20

21

身高hcm

151

160

169

1)你能確定身高h與指距d之間的函數(shù)關(guān)系式嗎?

2)若某人的身高為196cm,一般情況下他的指距應(yīng)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線x軸交于點(diǎn),與y軸交于點(diǎn)B,拋物線經(jīng)過點(diǎn)

k的值和拋物線的解析式;

x軸上一動(dòng)點(diǎn),過點(diǎn)M且垂直于x軸的直線與直線AB及拋物線分別交于點(diǎn)

若以O,B,N,P為頂點(diǎn)的四邊形OBNP是平行四邊形時(shí),m的值.

當(dāng) 時(shí),m的值.

查看答案和解析>>

同步練習(xí)冊答案