如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交AC與E,交BC與D.求證:

1.的中點;(

2.△∽△;

3.

 

 

1.證明:∵AB是⊙O的直徑,∴∠ADB=90° ,

 

 
即AD是底邊BC上的高.    

又∵AB=AC,∴△ABC是等腰三角形,

∴D是BC的中點;

2.證明:∵∠CBE與∠CAD是同弧所對的圓周角,

     ∴ ∠CBE=∠CAD.

     又∵ ∠BCE=∠ACD,

    ∴△BEC∽△ADC;

3.證明:由△BEC∽△ADC,知,

即CD·BC=AC·CE.

∵D是BC的中點,∴CD=BC.

  又 ∵AB=AC,∴CD·BC=AC·CE=BC ·BC=AB·CE

即BC=2AB·CE.

 解析:略

 

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案