【題目】【發(fā)現(xiàn)】如圖∠ACB=∠ADB=90°,那么點(diǎn)D在經(jīng)過A,B,C三點(diǎn)的圓上(如圖①)
(1)【思考】如圖②,如果∠ACB=∠ADB=a(a≠90°)(點(diǎn)C,D在AB的同側(cè)),那么點(diǎn)D還在經(jīng)過A,B,C三點(diǎn)的圓上嗎?
請證明點(diǎn)D也不在⊙O內(nèi).
(2)【應(yīng)用】
利用【發(fā)現(xiàn)】和【思考】中的結(jié)論解決問題:
若四邊形ABCD中,AD∥BC,∠CAD=90°,點(diǎn)E在邊AB上,CE⊥DE.
(1)作∠ADF=∠AED,交CA的延長線于點(diǎn)F(如圖④),求證:DF為Rt△ACD的外接圓的切線;
(2)如圖⑤,點(diǎn)G在BC的延長線上,∠BGE=∠BAC,已知sin∠AED=,AD=1,求DG的長.
【答案】
(1)
解:【思考】如圖1,
假設(shè)點(diǎn)D在⊙O內(nèi),延長AD交⊙O于點(diǎn)E,連接BE,則∠AEB=∠ACB,
∵∠ADE是△BDE的外角,
∴∠ADB>∠AEB,
∴∠ADB>∠ACB,
因此,∠ADB>∠ACB這與條件∠ACB=∠ADB矛盾,
所以點(diǎn)D也不在⊙O內(nèi),
所以點(diǎn)D即不在⊙O內(nèi),也不在⊙O外,點(diǎn)D在⊙O上
(2)
【應(yīng)用】
(1)如圖2,取CD的中點(diǎn)O,則點(diǎn)O是RT△ACD的外心,
∵∠CAD=∠DEC=90°,
∴點(diǎn)E在⊙O上,
∴∠ACD=∠AED,
∵∠FDA=∠AED,
∴∠ACD=∠FDA,
∵∠DAC=90°,
∴∠ACD+∠ADC=90°,
∴∠FDA+∠ADC=90°,
∴OD⊥DF,
∴DF為Rt△ACD的外接圓的切線;
(2)∵∠BGE=∠BAC,
∴點(diǎn)G在過C、A、E三點(diǎn)的圓上,如圖3,
又∵過C、A、E三點(diǎn)的圓是RT△ACD的外接圓,即⊙O,
∴點(diǎn)G在⊙O上,
∵CD是直徑,
∴∠DGC=90°,
∵AD∥BC,
∴∠ADG=90°
∵∠DAC=90°
∴四邊形ACGD是矩形,
∴DG=AC,
∵sin∠AED=,∠ACD=∠AED,
∴sin∠ACD=,
在RT△ACD中,AD=1,
∴CD=,
∴AC==,
∴DG=.
【解析】【思考】假設(shè)點(diǎn)D在⊙O內(nèi),利用圓周角定理及三角形外角的性質(zhì),可證得與條件相矛盾的結(jié)論,從而證得點(diǎn)D不在⊙O內(nèi);
【應(yīng)用】(1)作出RT△ACD的外接圓,由發(fā)現(xiàn)可得點(diǎn)E在⊙O上,則證得∠ACD=∠FDA,又因?yàn)椤螦CD+∠ADC=90°,于是有∠FDA+∠ADC=90°,即可證得DF是圓的切線;
(2)根據(jù)【發(fā)現(xiàn)】和【思考】可得點(diǎn)G在過C、A、E三點(diǎn)的圓O上,進(jìn)而易證四邊形ACGD是矩形,根據(jù)已知條件解直角三角形ACD可得AC的長,即DG的長.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,C是⊙O上一點(diǎn),∠BAC的平分線交⊙O于點(diǎn)D,交⊙O的切線BE于點(diǎn)E,過點(diǎn)D作DF⊥AC,交AC的延長線于點(diǎn)F.
(1)求證:DF是⊙O的切線;
(2)若DF=3,DE=2,求 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC,射線BP從BA所在位置開始繞點(diǎn)B順時針旋轉(zhuǎn),旋轉(zhuǎn)角為α(0°<α<180°)
(1)當(dāng)∠BAC=60°時,將BP旋轉(zhuǎn)到圖2位置,點(diǎn)D在射線BP上.若∠CDP=120°,則∠ACD__∠ABD(填“>”、“=”、“<”),線段BD、CD與AD之間的數(shù)量關(guān)系是_____;
(2)當(dāng)∠BAC=120°時,將BP旋轉(zhuǎn)到圖3位置,點(diǎn)D在射線BP上,若∠CDP=60°,求證:BD﹣CD=AD;
(3)將圖3中的BP繼續(xù)旋轉(zhuǎn),當(dāng)30°<α<180°時,點(diǎn)D是直線BP上一點(diǎn)(點(diǎn)P不在線段BD上),若∠CDP=120°,請直接寫出線段BD、CD與AD之間的數(shù)量關(guān)系(不必證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,OA=1,AC是⊙O的弦,過點(diǎn)C的切線交AB的延長線于點(diǎn)D,若BD=,則∠ACD= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】活動1:
在一只不透明的口袋中裝有標(biāo)號為1,2,3的3個小球,這些球除標(biāo)號外都相同,充分?jǐn)噭颍、乙、丙三位同學(xué)丙→甲→乙的順序依次從袋中各摸出一個球(不放回),摸到1號球勝出,計算甲勝出的概率.(注:丙→甲→乙表示丙第一個摸球,甲第二個摸球,乙最后一個摸球)
(1)活動1:
在一只不透明的口袋中裝有標(biāo)號為1,2,3的3個小球,這些球除標(biāo)號外都相同,充分?jǐn)噭,甲、乙、丙三位同學(xué)丙→甲→乙的順序依次從袋中各摸出一個球(不放回),摸到1號球勝出,計算甲勝出的概率.(注:丙→甲→乙表示丙第一個摸球,甲第二個摸球,乙最后一個摸球)
(2)活動2:
在一只不透明的口袋中裝有標(biāo)號為1,2,3,4的4個小球,這些球除標(biāo)號外都相同,充分?jǐn)噭颍埬銓、乙、丙三名同學(xué)規(guī)定一個摸球順序:→→ , 他們按這個順序從袋中各摸出一個球(不放回),摸到1號球勝出,則第一個摸球的同學(xué)勝出的概率等于 ,最后一個摸球的同學(xué)勝出的概率等于
(3)猜想:
在一只不透明的口袋中裝有標(biāo)號為1,2,3,…,n(n為正整數(shù))的n個小球,這些球除標(biāo)號外都相同,充分?jǐn)噭,甲、乙、丙三名同學(xué)從袋中各摸出一個球(不放回),摸到1號球勝出,猜想:這三名同學(xué)每人勝出的概率之間的大小關(guān)系.
你還能得到什么活動經(jīng)驗(yàn)?(寫出一個即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“愛滿揚(yáng)州”慈善一日捐活動中,學(xué)校團(tuán)總支為了了解本校學(xué)生的捐款情況,隨機(jī)抽取了50名學(xué)生的捐款數(shù)進(jìn)行了統(tǒng)計,并繪制成統(tǒng)計圖.
(1)這50名同學(xué)捐款的眾數(shù)為 元,中位數(shù)為 元。
(2)求這50名同學(xué)捐款的平均數(shù)。
(3)該校共有600名學(xué)生參與捐款,請估計該校學(xué)生的捐款總數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為2的正方形ABCD中剪去一個邊長為1的小正方形CEFG,動點(diǎn)P從點(diǎn)A出發(fā),沿A→D→E→F→G→B的路線繞多邊形的邊勻速運(yùn)動到點(diǎn)B時停止(不含點(diǎn)A和點(diǎn)B),則△ABP的面積S隨著時間t變化的函數(shù)圖象大致是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市為促銷,決定對A,B兩種商品進(jìn)行打折出售.打折前,買6件A商品和3件B商品需要54元,買3件A商品和4件B商品需要32元;打折后,買50件A商品和40件B商品僅需364元,這比打折前少花多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為6,E、F分別是AB、BC邊上的點(diǎn),且∠EDF=45°,將△DAE繞點(diǎn)D逆時針旋轉(zhuǎn)90°,得到△DCM.若AE=2,則FM的長為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com