我們發(fā)現(xiàn),用不同的方式表示同一圖形的面積可以解決線段長(zhǎng)度之間關(guān)系的有關(guān)問題,這種方法稱為等面積法,這是一種重要的數(shù)學(xué)方法。請(qǐng)你用等面積法來探究下列兩個(gè)問題:
(1)如圖1是著名的趙爽弦圖,由四個(gè)全等的直角三角形拼成,請(qǐng)你用它來驗(yàn)證勾股定理;
(2)如圖2,在Rt△ABC中,∠ACB=90°,CD是AB邊上的高,AC=4,BC=3,求CD的長(zhǎng)度。
解:(1)∵大正方形面積為c2
直角三角形面積為 ab,
小正方形面積為:(b-a)2
∴c2=4×ab+(a-b)2=2ab+a2-2ab+b2
即c2=a2+b2;
(2)在Rt△ABC中,
∵∠ACB=90°,
∴由勾股定理,得:
AB==5
∵CD⊥AB,
∴S△ABC=AC·BC=AB·CD
∴CD=。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

我們發(fā)現(xiàn),用不同的方式表示同一圖形的面積可以解決線段長(zhǎng)度之間關(guān)系的有關(guān)問題,這種方法稱為等面積法,這是一種重要的數(shù)學(xué)方法.請(qǐng)你用等面積法來探究下列兩個(gè)問題:
(1)如圖1是著名的趙爽弦圖,由四個(gè)全等的直角三角形拼成,請(qǐng)你用它來驗(yàn)證勾股定理;
(2)如圖2,在Rt△ABC中,∠ACB=90°,CD是AB邊上的高,AC=4,BC=3,求CD的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年廣東佛山南海鹽步中學(xué)初二上周質(zhì)量數(shù)學(xué)試卷(帶解析) 題型:解答題

我們發(fā)現(xiàn),用不同的方式表示同一圖形的面積可以解決線段長(zhǎng)度之間關(guān)系的有關(guān)問題這種方法稱為等面積法,這是一種重要的數(shù)學(xué)方法.請(qǐng)你用等面積法來探究下列兩個(gè)問題:

(1)如圖1是著名的趙爽弦圖,由四個(gè)全等的直角三角形拼成,請(qǐng)你用它來驗(yàn)證勾股定理;
(2)如圖2,在Rt△ABC中,∠ACB=90°,CD是AB邊上的高,AC= 4,BC=3,求CD的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年廣東佛山南海鹽步中學(xué)初二上周質(zhì)量數(shù)學(xué)試卷(解析版) 題型:解答題

我們發(fā)現(xiàn),用不同的方式表示同一圖形的面積可以解決線段長(zhǎng)度之間關(guān)系的有關(guān)問題這種方法稱為等面積法,這是一種重要的數(shù)學(xué)方法.請(qǐng)你用等面積法來探究下列兩個(gè)問題:

(1)如圖1是著名的趙爽弦圖,由四個(gè)全等的直角三角形拼成,請(qǐng)你用它來驗(yàn)證勾股定理;

(2)如圖2,在Rt△ABC中,∠ACB=90°,CD是AB邊上的高,AC= 4,BC=3,求CD的長(zhǎng)度.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

我們發(fā)現(xiàn),用不同的方式表示同一圖形的面積可以解決線段長(zhǎng)度之間關(guān)系的有關(guān)問題,這種方法稱為等面積法,這是一種重要的數(shù)學(xué)方法.請(qǐng)你用等面積法來探究下列兩個(gè)問題:
(1)如圖1是著名的趙爽弦圖,由四個(gè)全等的直角三角形拼成,請(qǐng)你用它來驗(yàn)證勾股定理;
(2)如圖2,在Rt△ABC中,∠ACB=90°,CD是AB邊上的高,AC=4,BC=3,求CD的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案