【題目】(8分)選擇適當(dāng)?shù)姆椒ń夥匠蹋?/span>

(1)2(x-3)=3x(x-3). (2)2x2-3x+1=0.

【答案】(1)x1=3或x2;(2)x1=1或x2

【解析】試題分析:(1)方程移項(xiàng)后,左邊分解因式后,利用兩數(shù)相乘積為0,兩因式中至少有一個為0轉(zhuǎn)化為兩個一元一次方程來求解.

(2)方程左邊分解因式后,利用兩數(shù)相乘積為0,兩因式中至少有一個為0轉(zhuǎn)化為兩個一元一次方程來求解.

(1)2(x-3)=3x(x-3).

(x-3)(3x-2)=0

x-3=03x-2=0

x1=3x2

(2)2x2-3x+1=0.

a=2,b=-3,c=1.

b2-4ac=(-3)2-4×2×1=1>0.

x

x1=1x2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列選項(xiàng)中三條線段能組成三角形的是(  。

A.5cm,6cm,13cmB.3cm,3cm,6cmC.4cm5cm,6cmD.4cm29cm,11cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是琳琳6個裝好糖果的禮包盒,每盒上面的數(shù)字代表這盒禮包實(shí)際裝有的糖果數(shù)量.她把其中的5盒送給好朋友小芬和小紅,自己留下1盒.已知送的都是整盒,包裝沒拆過,送給小芬的糖果數(shù)量是小紅的2倍,則琳琳自己留下的這盒有糖果( 。

A. 15 B. 18 C. 20 D. 31

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們美麗的鐵一中校園環(huán)境優(yōu)美,文化氛圍濃郁,占地70余畝,建筑面積約5萬平方米,請將5萬平方米這個數(shù)用科學(xué)記數(shù)法表示(
A.5.0×105平方米
B.5.0×104平方米
C.50×103平方米
D.0.5×106平方米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次數(shù)學(xué)測試中,某學(xué)習(xí)小組5人的成績分別是120、100、135、100、125,則他們成績的中位數(shù)是.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8.動點(diǎn)P從點(diǎn)A開始沿折線AC-CB-BA運(yùn)動,點(diǎn)P在AC,CB,BA邊上運(yùn)動的速度分別為每秒3,4,5個單位.直線l從與AC重合的位置開始,以每秒個單位的速度沿CB方向移動,移動過程中保持l∥AC,且分別與CB,AB邊交于E,F(xiàn)兩點(diǎn),點(diǎn)P與直線l同時出發(fā),設(shè)運(yùn)動的時間為t秒,當(dāng)點(diǎn)P第一次回到點(diǎn)A時,點(diǎn)P和直線l同時停止運(yùn)動.

(1)當(dāng)t=5秒時,點(diǎn)P走過的路徑長為_________;當(dāng)t=_________秒時,點(diǎn)P與點(diǎn)E重合;

(2)當(dāng)點(diǎn)P在AC邊上運(yùn)動時,連結(jié)PE,并過點(diǎn)E作AB的垂線,垂足為H. 若以C、P、E為頂點(diǎn)的三角形與△EFH相似,試求線段EH的值;

(3)當(dāng)點(diǎn)P在折線AC-CB-BA上運(yùn)動時,作點(diǎn)P關(guān)于直線EF的對稱點(diǎn)Q.在運(yùn)動過程中,若形成的四邊形PEQF為菱形,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種零件,標(biāo)明要求是φ20±0.2 mmφ表示直徑,單位:毫米),經(jīng)檢查,一個零件的直徑是19.9mm,該零件_____________(填合格不合格).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的高BD,CE相交于點(diǎn)O.請你添加一個條件,使BD=CE.你所添加的條件是________.(僅添加一對相等的線段或一對相等的角)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AB是⊙O的直徑,PB切⊙O于點(diǎn)B,PA交⊙O于點(diǎn)C,∠APB是平分線分別交BC,AB于點(diǎn)D、E,交⊙O于點(diǎn)F,∠A=60°,并且線段AE、BD的長是一元二次方程 x2﹣kx+2 =0的兩根(k為常數(shù)).

(1)求證:PABD=PBAE;

(2)求證:⊙O的直徑長為常數(shù)k;

(3)求tan∠FPA的值.

查看答案和解析>>

同步練習(xí)冊答案