【題目】某學校為了豐富學生課余生活,決定開設以下體育課外活動項目:A.版畫  B.保齡球C.航! D.園藝種植,為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結果繪制成了兩幅不完整的統(tǒng)計圖,請回答下列問題:

(1)這次被調(diào)查的學生共有   人;

(2)請你將條形統(tǒng)計圖(2)補充完整;

(3)在平時的保齡球項目訓練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學中任選兩名參加保齡球比賽,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答)

【答案】(1)200;(2)補圖見解析;(3)

【解析】試題分析:(1)由題意可知這次被調(diào)查的學生共有20÷=200(人);

(2)首先求得C項目對應人數(shù)為:200﹣20﹣80﹣40=60(人),繼而可補全條形統(tǒng)計圖;

(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與恰好選中甲、乙兩位同學的情況,再利用概率公式即可求得答案.

解:(1)根據(jù)題意得:這次被調(diào)查的學生共有20÷=200(人).

故答案為:200;

(2)C項目對應人數(shù)為:200﹣20﹣80﹣40=60(人);

補充如圖.

(3)列表如下:

(乙,甲)

(丙,甲)

(丁,甲)

(甲,乙)

(丙,乙)

(丁,乙)

(甲,丙)

(乙,丙)

(丁,丙)

(甲,。

(乙,。

(丙,。

∵共有12種等可能的情況,恰好選中甲、乙兩位同學的有2種,

P(選中甲、乙)==

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】假如你想知道自己的步長,那么你的調(diào)查問題是(  ).
A.我自己
B.我每跨一步平均長度為多少
C.步長
D.我走幾步的長度

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣(x﹣1)2+cx軸交于A,BA,B分別在y軸的左右兩側)兩點,y軸的正半軸交于點C,頂點為D,已知A(﹣1,0)

1)求點BC的坐標;

2)判斷CDB的形狀并說明理由;

3)將COB沿x軸向右平移t個單位長度(0t3)得到QPEQPECDB重疊部分(如圖中陰影部分)面積為S,求St的函數(shù)關系式,并寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,將三角形各點的縱坐標都減去3,橫坐標保持不變,所得圖形與原圖形相比( )

A. 向右平移了3個單位長度B. 向左平移了3個單位長度

C. 向上平移了3個單位長度D. 向下平移了3個單位長度

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的邊長為3cm,動點M從點B出發(fā)以3cm/s的速度沿著邊BCCDDA運動,到達點A停止運動,另一動點N同時從點B出發(fā),以1cm/s的速度沿著邊BA向點A運動,到達點A停止運動,設點M運動時間為x(s),△AMN的面積為y(cm2),則y關于x的函數(shù)圖象是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直線y=kx+b與反比例函數(shù)y=x<0)的圖象交于點A(﹣1,m),與x軸交于點B(1,0)

(1)求m的值;

(2)求直線AB的解析式;

(3)若直線x=tt>1)與直線y=kx+b交于點M,與x軸交于點N,連接AN,SAMN=,求t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠C=90°,∠A=30°.

(1)用尺規(guī)作圖作AB邊上的垂直平分線DE,交AC于點D,交AB于點E.(保留作圖痕跡,不要求寫作法和證明)

(2)連接BD,求證:DE=CD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若順次連接四邊形ABCD各邊中點所得四邊形是矩形,則四邊形ABCD必然是( )
A.菱形
B.對角線相互垂直的四邊形
C.正方形
D.對角線相等的四邊形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】多項式x3﹣x的因式為( 。
A.x、(x﹣1)
B.(x+1)
C.x2﹣x
D.以上都是

查看答案和解析>>

同步練習冊答案