【題目】如圖,在矩形中,,,為邊上的一點,,動點從點出發(fā),以每秒1個單位的速度沿著邊向終點運動,連接.設點運動的時間為秒.
(1)求的長;
(2)當為多少秒時,是直角三角形?
科目:初中數(shù)學 來源: 題型:
【題目】為了貫徹落實中央提出的“厲行節(jié)約,反對浪費”的精神,某校學生自發(fā)組織了“保護水源,從我做起”的活動,學生們對我國“水資源問題”進行了調查,發(fā)現(xiàn)我國水資源越來越匱乏,可是人們的節(jié)約意識并不強.據(jù)查,僅某飲料廠每天從地下抽水達3500立方米左右.同學們采取問卷調查的方式,隨機調查了本校150名同學家庭人均月用水量和節(jié)水措施情況.以下是根據(jù)調查結果作出的部分統(tǒng)計圖:
請根據(jù)以上信息,解答以下問題:
(1)補全圖①和圖②;
(2)為提高人們的節(jié)水意識,請你寫出一條與圖②中已明確的節(jié)水措施不同的節(jié)水措施.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點O,過點O作EF∥BC交AB于E,交AC于F,過點O作OD⊥AC于D,下列四個結論:
①EF=BE+CF;
②∠BOC=90°+∠A;
③點O到△ABC各邊的距離相等;
④設OD=m,AE+AF=n,則.
其中正確的結論是____.(填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中.點E,F(xiàn)分別在BC,CD上,△AEF是等邊三角形.連接AC交EF于點G.過點G作GH⊥CE于點H.若 ,則 =( )
A.6
B.4
C.3
D.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AE⊥BC,CF⊥AD,垂足分別為E,F(xiàn),AE,CF分別與BD交于點G和H,且AB= .
(1)若tan∠ABE =2,求CF的長;
(2)求證:BG=DH.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,AB=BC=10,以AB為直徑作⊙O分別交AC,BC于點D,E,連接DE和DB,過點E作EF⊥AB,垂足為F,交BD于點P.
(1)求證:AD=DE;
(2)若CE=2,求線段CD的長;
(3)在(2)的條件下,求△DPE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某年級共有300名學生.為了解該年級學生A,B兩門課程的學習情況,從中隨機抽取60名學生進行測試,獲得了他們的成績(百分制),并對數(shù)據(jù)(成績)進行整理、描述和分析.下面給出了部分信息.
.A課程成績的頻數(shù)分布直方圖如下(數(shù)據(jù)分成6組:,,,,,);
.A課程成績在這一組是:
70 71 71 71 76 76 77 78 79 79 79
.A,B兩門課程成績的平均數(shù)、中位數(shù)、眾數(shù)如下:
課程 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
A | |||
B | 70 | 83 |
根據(jù)以上信息,回答下列問題:
(1)寫出表中的值;
(2)在此次測試中,某學生的A課程成績?yōu)?/span>76分,B課程成績?yōu)?/span>71分,這名學生成績排名更靠前的課程是________(填“A”或“B”),理由是_______;
(3)假設該年級學生都參加此次測試,估計A課程成績超過分的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解題: 學習了二次根式后,你會發(fā)現(xiàn)一些含有根號的式子可以寫成另一個式子的平方,如3+2 =(1+ )2 , 我們來進行以下的探索:
設a+b =(m+n )2(其中a,b,m,n都是正整數(shù)),則有a+b =m2+2n2+2mn ,∴a=m+2n2 , b=2mn
, 這樣就得出了把類似a+b 的式子化為平方式的方法.
請仿照上述方法探索并解決下列問題:
(1)當a,b,m,n都為正整數(shù)時,若a﹣b =(m﹣n )2 , 用含m,n的式子分別表示a,b,得a= , b=;
(2)利用上述方法,找一組正整數(shù)a,b,m,n填空:﹣ =(﹣ )2
(3)a﹣4 =(m﹣n )2且a,m,n都為正整數(shù),求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1所示在平面直角坐標系中,有長方形OABC,O是坐標原點,A(a,0),C(0,b),且a,b滿足
(1)求A,B,C三點坐標;
(2)如圖2所示,長方形對角線OB、AC交于D點,若有一點P從A點出發(fā),以1單位/秒速度向x軸負方向勻速運動,同時另一點Q從O出發(fā),以2個單位/秒,沿長方形邊長O-C-B順時針勻速運動,當Q到達B點時P、Q同時停止運動,設P點開始運動時間為t,請問:當t為何值時有S△OCP≤S△ODQ ?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com