【題目】如圖正方形ABCD中,點(diǎn)E、F分別在CDBC邊上,△AEF是等邊三角形.以下結(jié)論:①ECFC;②∠AED75°;③AFCE;④EF的垂直平分線是直線AC.正確結(jié)論個(gè)數(shù)有( 。﹤(gè).

A. 1B. 2C. 3D. 4

【答案】D

【解析】

由題意可證ABF≌△ADE,可得BF=DE,即可得EC=CF,由勾股定理可得EF=EC,由平角定義可求∠AED=75°,由AE=AF,EC=FC可證AC垂直平分EF,
則可判斷各命題是否正確.

∵四邊形ABCD是正方形,
AB=AD=BC=CD,B=C=D=DAB=90°
∵△AEF是等邊三角形
AE=AF=EF,EAF=AEF=60°
AD=AB,AF=AE
∴△ABF≌△ADE
BF=DE
BC-BF=CD-DE
CE=CF
故①正確
CE=CF,C=90°
EF=CE,CEF=45°
AF=CE,
∵∠AED=180°-CEF-AEF
∴∠AED=75°
故②③正確
AE=AF,CE=CF
AC垂直平分EF
故④正確
故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校利用二維碼進(jìn)行學(xué)生學(xué)號(hào)統(tǒng)一編排.黑色小正方形表示1,白色小正方形表示0,將每一行數(shù)字從左到右依次記為a,b,c,d,那么利用公式a×23-b×22-c×21+d計(jì)算出每一行的數(shù)據(jù).第一行表示年級(jí),第二行表示班級(jí),如圖1所示,第一行數(shù)字從左往右依次是1,00,1,則表示的數(shù)據(jù)為1×23+0×22+0×21+1=9,計(jì)作09,第二行數(shù)字從左往右依次是1,01,0,則表示的數(shù)據(jù)為1×23+0×22+1×21=10,計(jì)作10,以此類推,圖1代表的統(tǒng)一學(xué)號(hào)為091034,表示9年級(jí)10班34號(hào).小明所對(duì)應(yīng)的二維碼如圖2所示,則他的編號(hào)是_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的袋子里裝有3個(gè)黑球和若干白球,它們除顏色外都相同.在不允許將球倒出來(lái)數(shù)的前提下,小明為估計(jì)其中白球數(shù),采用如下辦法:隨機(jī)從中摸出一球,記下顏色后放回袋中,充分搖勻后,再隨機(jī)摸出一球,記下顏色,不斷重復(fù)上述過(guò)程.小明共摸100次,其中20次摸到黑球.根據(jù)上述數(shù)據(jù),小明估計(jì)口袋中白球大約有( )

A. 10個(gè) B. 12 個(gè) C. 15 個(gè) D. 18個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校八年級(jí)所有女生的身高統(tǒng)計(jì)數(shù)據(jù)如下表,請(qǐng)回答下列問(wèn)題:

(1) 這個(gè)學(xué)校八年級(jí)共有多少女生?

(2) 身高在 的女生有多少人?

(3) 一女生的身高恰好為 ,哪一組包含這個(gè)身高?這一組出現(xiàn)的頻數(shù)、頻率各是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】九(1)班同學(xué)為了解 2011 年某小區(qū)家庭月均用水情況,隨機(jī)調(diào)查了該小區(qū)部分家庭,并將調(diào)查數(shù)據(jù)進(jìn)行如下整理.請(qǐng)解答以下問(wèn)題:

(1) 把上面的頻數(shù)分布表和頻數(shù)分布直方圖補(bǔ)充完整;

(2) 求月均用水量不超過(guò) 的家庭數(shù)占被調(diào)查家庭總數(shù)的百分比;

(3) 若該小區(qū)有 戶家庭,根據(jù)調(diào)查數(shù)據(jù)估計(jì),該小區(qū)月均用水量超過(guò) 的家庭大約有多少戶 ?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,以AB為直徑的0經(jīng)過(guò)點(diǎn)D,E是O上一點(diǎn),且AED=45°

1求證:CD是O的切線

2O的半徑為3,AE=5,求DAE的正弦值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 如圖,在平面直角坐標(biāo)系中直線y=x﹣2與y軸相交于點(diǎn)A,與反比例函數(shù)在第一象限內(nèi)的圖象相交于點(diǎn)B(m,2).

(1)求反比例函數(shù)的關(guān)系式;

(2)將直線y=x﹣2向上平移后與反比例函數(shù)圖象在第一象限內(nèi)交于點(diǎn)C,且ABC的面積為18,求平移后的直線的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①是1個(gè)直角三角形和2個(gè)小正方形,直角三角形的三條邊長(zhǎng)分別是ab,c,其中ab是直角邊,正方形的邊長(zhǎng)分別是a、b

1)將4個(gè)完全一樣的直角三角形和2個(gè)小正方形構(gòu)成一個(gè)大正方形(如圖②).用兩種不同的方法列代數(shù)式表示圖②中的大正方形面積:

方法一:______________________________

方法二:______________________________;

2)觀察圖②,試寫(xiě)出,,這四個(gè)代數(shù)式之間的等量關(guān)系;

3)利用(2)的結(jié)論計(jì)算的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ACBC,BDAD,AC 與BD 交于O,AC=BD.

求證:(1)BC=AD;

(2)OAB是等腰三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案