【題目】我們定義:等腰三角形中底邊與腰的比叫作底角的鄰對(can).如圖①,在ABC中,ABAC,底角∠B的鄰對記作canB,這時canB.容易知道一個角的大小與這個角的鄰對值是一一對應的,根據(jù)上述角的鄰對的定義,解下列問題:

(1) . can30°______ __;

(2) . 如圖②,已知在ABC中,ABAC,canB,SABC24,求ABC的周長.

【答案】1;(218

【解析】試題分析:1)過點AADBC于點D,根據(jù)B=30°,可得出BD=AB,結(jié)合等腰三角形的性質(zhì)可得出BC=AB,繼而得出canB;

2)過點AAEBC于點E,根據(jù)canB=,設BC=8x,AB=5x,再由SABC=24,可得出x的值,繼而求出周長.

試題解析:解:(1)過點AADBC于點D,∵∠B=30°cosB==,BD=AB,∵△ABC是等腰三角形,BC=2BD=AB,故can30°==

2)過點AAEBC于點E,canB=,則可設BC=8xAB=5x,AE==3xSABC=24,BC×AE=12x2=24,解得:x=,故AB=AC=,BC=,從而可得ABC的周長為

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠MON=90,A是∠MON內(nèi)部的一點,過點AAB⊥ON,垂點為點B,AB=3厘米,OB=4厘米,動點E、F同時從O點出發(fā),點E1.5厘米/秒的速度沿ON方向運動,點F2厘米/秒的速度沿OM方向運動,EFOA交于點C,連接AE,當點E到達點B時,點F隨之停止運動。設運動時間為t秒(t>0)。

(1)當t=1秒時,ΔEOF與ΔABO是否相似?請說明理由。

(2)在運動過程中,不論t取何值時,總有EF⊥OA,為什么?

3)連接AF,在運動過程中,是否存在某一時刻t,使得SΔAEF=S四邊形ABOF ?若存在,請求出此時t的值;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,三角形記作在方格中,方格紙中的每個小方格都是邊長為1個單位的正方形,先將向上平移3個單位長度,再向右平移2個單位長度,得到

三個頂點的坐標分別是:______,______,______,

在圖中畫出;

平移后的三個頂點坐標分別為:______、______、______;

y軸有一點P,使面積相等,則P點的坐標為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲和乙騎摩托車分別從某大道上相距6000米的A、B兩地同時出發(fā),相向而行,勻速行駛一段時間后,到達C地的甲發(fā)現(xiàn)摩托車出了故障,立即停下電話通知乙,乙接到電話后立即以出發(fā)時速度的倍向C地勻速騎行,到達C地后,用5分鐘修好了甲摩托車,然后乙仍以出發(fā)時速度的倍勻速向終點A地騎行,甲仍以原來速度向B地勻速騎行,2分鐘后,發(fā)現(xiàn)乙的一件維修工具落在了自己車上,于是立即掉頭并以原速度倍的速度勻速返回(此時乙未到達A地).在這個過程中,兩人相距的路程y(米)與甲出發(fā)的時間x(分)之間的關(guān)系如圖所示(甲與乙打、接電話及掉頭時間忽略不計)則當乙到達A地時,甲離A地的距離為 ________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形中,順次連接四邊形各邊中點,得到四邊形,再順次連接四邊形各邊中點,得到四邊形...如此進行下去,得到四邊形則下列結(jié)論正確的個數(shù)有( )

①四邊形是矩形;②四邊形是菱形;③四邊形的周長為; ④四邊形的面積是

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,∠B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點MN,再分別以M、N為圓心,大于MN的長為半徑畫弧,兩弧交于點P,連結(jié)AP并延長交BC于點D. 下列結(jié)論:AD是∠BAC的平分線;②點DAB的垂直平分線上;③∠ADC=60°;④。其中正確的結(jié)論有(

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在平行四邊形ABCD中,AB=3cm,BC=5cm,ACAB.ACD沿AC的方向勻速平移得到PNM,速度為1cm/s;同時,點Q從點C出發(fā),沿著CB方向勻速移動,速度為1cm/s;當PNM停止平移時,點Q也停止移動,如圖.設移動時間為t(s)(0<t<4).連接PQ、MQ、MC.解答下列問題:

(1)當t為何值時,PQAB?

(2)當t=3時,求QMC的面積;

(3)是否存在某一時刻t,使PQMQ?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,△ACB和△ECD都是等腰直角三角形,∠ACB=ECD=90°,DAB邊上一點.

(1)求證:△ACE≌△BCD;

(2)AD=5,BD=12,求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+ca≠0)的大致圖象如圖,關(guān)于該二次函數(shù),下列說法錯誤的是( )

A. 函數(shù)有最小值

B. 對稱軸是直線x=

C. xyx的增大而減小

D. ﹣1x2時,y0

查看答案和解析>>

同步練習冊答案