【題目】為了預(yù)防疾病,某單位對(duì)辦公室采用藥熏消毒法進(jìn)行消毒,已知藥物燃燒時(shí),室內(nèi)每立方米空氣中的含藥量y(毫克)與時(shí)間x(分鐘)成為正比例,藥物燃燒后,y與x成反比例(如圖),現(xiàn)測(cè)得藥物8分鐘燃畢,此時(shí)室內(nèi)空氣中每立方米的含藥量6毫克,請(qǐng)根據(jù)題中所提供的信息,解答下列問(wèn)題:
(1)藥物燃燒時(shí),y關(guān)于x的函數(shù)關(guān)系式為________,自變量x的取值范為________;藥物燃燒后,y關(guān)于x的函數(shù)關(guān)系式為________.
(2)研究表明,當(dāng)空氣中每立方米的含藥量低于1.6毫克時(shí)員工方可進(jìn)辦公室,那么從消毒開(kāi)始,至少需要經(jīng)過(guò)________分鐘后,員工才能回到辦公室;
(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于3毫克且持續(xù)時(shí)間不低于10分鐘時(shí),才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?
【答案】(1)y=x;(0≤x≤8);y=(x>8);(2)30;(3)有效,理由見(jiàn)解析.
【解析】
(1)當(dāng)0≤x≤8時(shí),藥物燃燒時(shí)y與x之間是正比例函數(shù)關(guān)系,根據(jù)(8,6)利用待定系數(shù)法即可求出y與x之間的函數(shù)關(guān)系式;當(dāng)x>8時(shí),藥物燃燒后y與x的函數(shù)關(guān)系是反比例函數(shù)關(guān)系,根據(jù)(8,6)利用待定系數(shù)法即可求出y與x之間的函數(shù)關(guān)系式;
(2)將y=1.6代入反比例函數(shù)關(guān)系式,就可求出對(duì)應(yīng)的自變量的值,結(jié)合圖像得出答案;
(3)把y=3代入正比例函數(shù)解析式和反比例函數(shù)解析式,求出相應(yīng)的x,兩數(shù)之差與10進(jìn)行比較,大于等于10就有效.
(1) 當(dāng)0≤x≤8時(shí),設(shè)y=kx,把(8,6)代入得
6=8k,
∴k=
∴y= x(0≤x≤8);
當(dāng)x>8時(shí),設(shè)y=,把(8,6)代入得
設(shè)6=,
∴m=48,
∴y= (x>8)
(2)當(dāng)y=1.6時(shí),
=1.6,
解之得
x=30,
結(jié)合圖像知,至少需要經(jīng)過(guò)30分鐘后,員工才能回到辦公室;
(3)把y=3代入y= x,得:x=4
把y=3代入y= ,得:x=16
∵16﹣4=12
所以這次消毒是有效的
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,∠BAC=90°,AB=AC, AE是過(guò)點(diǎn)A的一條直線,且B點(diǎn)和C點(diǎn)在AE的兩側(cè),BD⊥AE 于點(diǎn)D,CE⊥AE于點(diǎn)E.
(1)求證:△ABD≌△ACE
(2)試說(shuō)明線段BD,線段DE和線段CE的數(shù)量關(guān)系
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,OB是以(O,a)為圓心,a為半徑的⊙O1的弦,過(guò)B點(diǎn)作⊙O1的切線,P為劣弧上的任一點(diǎn),且過(guò)P作OB、AB、OA的垂線,垂足分別是D、E、F.
(1)求證:PD2=PEPF;
(2)當(dāng)∠BOP=30°,P點(diǎn)為OB的中點(diǎn)時(shí),求D、E、F、P四個(gè)點(diǎn)的坐標(biāo)及S△DEF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校為統(tǒng)籌安排大課間體育活動(dòng),在各班隨機(jī)選取了一部分學(xué)生,分成四類活動(dòng):“籃球”、“羽毛球”、“乒乓球”、“其他”進(jìn)行調(diào)查,整理收集到的數(shù)據(jù),繪制成如下的兩幅統(tǒng)計(jì)圖.
(1)學(xué)校采用的調(diào)查方式是 ;學(xué)校共選取了 名學(xué)生;
(2)補(bǔ)全統(tǒng)計(jì)圖中的數(shù)據(jù):條形統(tǒng)計(jì)圖中羽毛球 人、乒乓球 人、其他 人、扇形統(tǒng)計(jì)圖中其他 %;
(3)該校共有1200名學(xué)生,請(qǐng)估計(jì)喜歡“乒乓球”的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形中,、、、分別是、、、的中點(diǎn),要使四邊形是矩形,則四邊形只需要滿足一個(gè)條件是( )
A.四邊形是梯形B.四邊形是菱形
C.對(duì)角線D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=﹣+bx+c與y軸交于點(diǎn)C,與x軸的兩個(gè)交點(diǎn)分別為A(﹣4,0),B(1,0).
(1)求拋物線的解析式;
(2)已知點(diǎn)P在拋物線上,連接PC,PB,若△PBC是以BC為直角邊的直角三角形,求點(diǎn)P的坐標(biāo);
(3)已知點(diǎn)E在x軸上,點(diǎn)F在拋物線上,是否存在以A,C,E,F(xiàn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,放在直角坐標(biāo)系中的正方形ABCD邊長(zhǎng)為4,現(xiàn)做如下實(shí)驗(yàn):拋擲一枚均勻的正四面體骰子(它有四個(gè)頂點(diǎn),各頂點(diǎn)的點(diǎn)數(shù)分別是1至4這四個(gè)數(shù)字中一個(gè)),每個(gè)頂點(diǎn)朝上的機(jī)會(huì)是相同的,連續(xù)拋擲兩次,將骰子朝上的頂點(diǎn)數(shù)作為直角坐標(biāo)中P點(diǎn)的坐標(biāo))第一次的點(diǎn)數(shù)作橫坐標(biāo),第二次的點(diǎn)數(shù)作縱坐標(biāo)).
(1)求P點(diǎn)落在正方形ABCD面上(含正方形內(nèi)部和邊界)的概率.
(2)將正方形ABCD平移整數(shù)個(gè)單位,則是否存在一種平移,使點(diǎn)P落在正方形ABCD
面上的概率為0.75;若存在,指出其中的一種平移方式;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲容器中裝有濃度為a的果汁,乙容器中裝有濃度為b的果汁,兩個(gè)容器都倒出m kg,把甲容器倒出的果汁混入乙容器,把乙容器倒出的果汁混入甲容器,混合后,兩容器內(nèi)的果汁濃度相同,則m的值為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=ax2+bx+c上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y,的對(duì)應(yīng)值如下表:
x | … | -2 | -1 | 0 | 1 | 2 | … |
y | … | 0 | -4 | -4 | 0 | 8 | … |
(1)根據(jù)上表填空:
①拋物線與x軸的交點(diǎn)坐標(biāo)是_________和_________;
②拋物線經(jīng)過(guò)點(diǎn)(-3,_________);
(2)試確定拋物線y=ax2+bx+c的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com