【題目】如圖,已知拋物線 與軸交于A(-1,0),B(3,0)兩點,與軸交于點C(0,3),動點P在拋物線上,直線PE與拋物線的對稱軸交于點M,點E的坐標(biāo)為(-2,0).
(1)求拋物線的函數(shù)表達(dá)式;
(2)若P與C關(guān)于拋物線的對稱軸對稱,求直線PE的函數(shù)表達(dá)式;
(3)若PM=EM,求點P的坐標(biāo).
【答案】(1) y=-x2+2x+3;(2)y=;(3)點P的坐標(biāo)為(,)或(,).
【解析】分析:(1)把點A、B、C的坐標(biāo)代入拋物線中,解出即可.
(2)設(shè)PE的函數(shù)表達(dá)式y=kx+m,根據(jù)題意算出P點坐標(biāo),把P、E的坐標(biāo)代入y=kx+m中,求出k、m的值即可.
(3)根據(jù)相似三角形的性質(zhì)即可解答.
詳解:(1) ∵拋物線與x軸交于A(-1,0),B(3,0),
∴可設(shè)拋物線的函數(shù)表達(dá)式為,
將C(0,3)代入,得:3=a×(0+1)(0-3),∴a=-1,
∴拋物線的函數(shù)表達(dá)式為y=-(x+1)(x-3).
即y=-x2+2x+3 .
(2) ∵拋物線的對稱軸為x=,
∴點C(0,3)關(guān)于對稱軸x=1對稱的點為(2,3),
∴由題意知,此時點P的坐標(biāo)為(2,3),
設(shè)直線PE的函數(shù)表達(dá)式為y=kx+m,
將P(2,3),E(-2,0)代入,
得: 解得:.
∴直線PE的函數(shù)表達(dá)式為y=.
(3)如圖,設(shè)對稱軸x=1與x軸的交點為F,過P作PH垂直對稱軸x=1于點H,
∵對稱軸x=1與x軸垂直,
∴Rt△PMH∽Rt△EMF,∴,
設(shè)動點P的坐標(biāo)為(x,y),
∵動點P可能在對稱軸x=1的左側(cè)或右側(cè)的拋物線上,∴PH=|x-1|,
又EF=3,PM=EM,
∴,∴x-1=,x=或x=,
當(dāng)x=時,y=-(+1)( -3)= ,
當(dāng)x=時,y=-(+1)( -3)= ,
∴所求點P的坐標(biāo)為(,)或(,).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 “賞中華詩詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國詩詞大會”,經(jīng)選拔后有50名學(xué)生參加決賽,這50名學(xué)生同時默寫50首古詩詞,若每正確默寫出一首古詩詞得2分,根據(jù)測試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:
請結(jié)合圖表完成下列各題:
(1)①表中a的值為 ,中位數(shù)在第 組;
②頻數(shù)分布直方圖補(bǔ)充完整;
(2)若測試成績不低于80分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?
(3)第5組10名同學(xué)中,有4名男同學(xué),現(xiàn)將這10名同學(xué)平均分成兩組進(jìn)行對抗練習(xí),且4名男同學(xué)每組分兩人,求小明與小強(qiáng)兩名男同學(xué)能分在同一組的概率.
組別 | 成績x分 | 頻數(shù)(人數(shù)) |
第1組 | 50≤x<60 | 6 |
第2組 | 60≤x<70 | 8 |
第3組 | 70≤x<80 | 14 |
第4組 | 80≤x<90 | a |
第5組 | 90≤x<100 | 10 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=﹣x+b(b>0)與其垂線y=x交于H,與雙曲線c:y=(k>0)在第一象限交于A,B,與兩坐標(biāo)軸交于C,D.
(1)當(dāng)A的坐標(biāo)為(2,1)時,求k的值和OH的長;
(2)若CH2﹣HA2=4,求雙曲線c的方程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝店準(zhǔn)備購進(jìn)甲、乙兩種服裝出售,甲種每件售價120元,乙種每件售價90元.每件甲服裝的進(jìn)價比乙服裝的進(jìn)價貴20元,購進(jìn)3件甲服裝的費用和購進(jìn)4件乙服裝的費用相等,現(xiàn)計劃購進(jìn)兩種服裝共100件,其中甲種服裝不少于65件.
(1)甲種服裝進(jìn)價為 元/件,乙種服裝進(jìn)價為 元/件;
(2)若購進(jìn)這100件服裝的費用不得超過7500元.
①求甲種服裝最多購進(jìn)多少件?
②該服裝店對甲種服裝每件降價元,乙種服裝價格不變,如果這100件服裝都可售完,那么該服裝店如何進(jìn)貨才能獲得最大利潤?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=90°,∠BAD=60°,AC=AD,AC平分∠BAD,M,N分別為AC,CD的中點,BM的延長線交AD于點E,連接MN,BN.對于下列四個結(jié)論:①MN∥AD;② BM=MN;③△BAE≌△ACB;④AD=BN,其中正確結(jié)論的序號是( )
A. ①②③④ B. ①②③ C. ①②④ D. ①②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小軍自制的勻速直線運動遙控車模型甲、乙兩車同時分別從、出發(fā),沿直線軌道同時到達(dá)處,已知乙的速度是甲的速度的1.5倍,甲、乙兩遙控車與處的距離、(米)與時間(分鐘)的函數(shù)關(guān)系如圖所示,則下列結(jié)論中:①的距離為120米;②乙的速度為60米/分;③的值為;④若甲、乙兩遙控車的距離不少于10米時,兩車信號不會產(chǎn)生互相干擾,則兩車信號不會產(chǎn)生互相干擾的的取值范圍是,其中正確的有( )個
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的部分圖象如圖所示,圖象過點,對稱軸為直線,下列結(jié)論: ; ; ; 若點、點、點在該函數(shù)圖象上,則; 若方程的兩根為和,且,則其中正確的結(jié)論是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在綜合與實踐課上,老師組織同學(xué)們以“矩形紙片的折疊”為主題開展數(shù)學(xué)活動.
(1)奮進(jìn)小組用圖1中的矩形紙片ABCD,按照如圖2所示的方式,將矩形紙片沿對角線AC折疊,使點B落在點處,則與重合部分的三角形的類型是________.
(2)勤學(xué)小組將圖2中的紙片展平,再次折疊,如圖3,使點A與點C重合,折痕為EF,然后展平,則以點A、F、C、E為頂點的四邊形是什么特殊四邊形?請說明理由.
(3)創(chuàng)新小組用圖4中的矩形紙片ABCD進(jìn)行操作,其中,,先沿對角線BD對折,點C落在點的位置,交AD于點G,再按照如圖5所示的方式折疊一次,使點D與點A重合,得折痕EN,EN交AD于點M.則EM的長為________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在水平地面上有一幢房屋BC與一棵樹DE,在地面觀測點A處測得屋頂C與樹梢D的仰角分別是45°與60°,∠CAD=60°,在屋頂C處測得∠DCA=90°.若房屋的高BC=6米,則樹高DE的長度為( 。
A. 3 B. 6 C. 3 D. 6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com