【題目】如圖,風(fēng)車(chē)的支桿OE垂直于桌面,風(fēng)車(chē)中心O到桌面的距離OE為25cm,小小風(fēng)車(chē)在風(fēng)吹動(dòng)下繞著中心O不停地轉(zhuǎn)動(dòng),轉(zhuǎn)動(dòng)過(guò)程中,葉片端點(diǎn)A、B、C、D在同一圓O上,已知⊙O的半徑為10cm,
(1)風(fēng)車(chē)在轉(zhuǎn)動(dòng)過(guò)程中,當(dāng)∠AOE=30°時(shí),求點(diǎn)A到桌面的距離.
(2)在風(fēng)車(chē)轉(zhuǎn)動(dòng)一周的過(guò)程中,求點(diǎn)A相對(duì)于桌面的高度不超過(guò)20cm所經(jīng)過(guò)的路線長(zhǎng).
【答案】(1);(2)
【解析】
(1)作A1F⊥MN于點(diǎn)F,A1G⊥OE于點(diǎn)G,在Rt△A1OG中,利用三角函數(shù)可求得OG,從而得出點(diǎn)A到桌面的距離A1F;
(2)作A2H⊥MN于H,則A2H=20cm,作A2D⊥OE于點(diǎn)D,則DE=A2H.在Rt△A2OD中,由特殊角的三角函數(shù)得∠A2OD=60°,由圓的軸對(duì)稱(chēng)性可知,∠A3OA2=2∠A2OD=120°,從而得出點(diǎn)A所經(jīng)過(guò)的路徑長(zhǎng).
解:(1)如圖(1),點(diǎn)A運(yùn)動(dòng)到點(diǎn)A1的位置時(shí)∠AOE=30°,作A1F⊥MN于點(diǎn)F,A1G⊥OE于點(diǎn)G,
∴A1F=GE.
在Rt△A1OG中,
∵∠A1OG=30°,OA1=10cm,
∴OG=OA1cos30°=10×cm.
∵OE=25 cm,
∴GE=OEOG=25(cm),
∴A1F=GE=25(cm),
答:點(diǎn)A到桌面的距離是25厘米;
(2)如圖(2),點(diǎn)A在旋轉(zhuǎn)過(guò)程中運(yùn)動(dòng)到點(diǎn)A2、A3的位置時(shí),點(diǎn)A到桌面的距離等于20厘米,作A2H⊥MN于H,則A2H=20 cm,作A2D⊥OE于點(diǎn)D,
∴DE=A2H,
∵OE=25 cm,
∴OD=OEDE=2520=5 cm,
在Rt△A2OD中,OA2=10 cm,
∴cos∠A2OD=,
∴∠A2OD=60°.
由圓的對(duì)稱(chēng)性可知,∠A3OA2=2∠A2OD=120°,
∴點(diǎn)A相對(duì)于桌面的高度不超過(guò)20cm所經(jīng)過(guò)的路線長(zhǎng)為:cm.
答:點(diǎn)A相對(duì)于桌面的高度不超過(guò)20cm所經(jīng)過(guò)的路線長(zhǎng)為厘米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=ax2+bx+c(a>0)的對(duì)稱(chēng)軸為x=-1,交x軸的一個(gè)交點(diǎn)為(x1,0),且0<x1<1, 則下列結(jié)論:①b>0,c<0;②a-b+c>0 ;③b<a ④ 3a+c>0,⑤9a-3b+c>0,其中正確的命題有( )個(gè).
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖的中,,且為上一點(diǎn).今打算在上找一點(diǎn),在上找一點(diǎn),使得與全等,以下是甲、乙兩人的作法:
(甲)連接,作的中垂線分別交、于點(diǎn)、點(diǎn),則、兩點(diǎn)即為所求
(乙)過(guò)作與平行的直線交于點(diǎn),過(guò)作與平行的直線交于點(diǎn),則、兩點(diǎn)即為所求
對(duì)于甲、乙兩人的作法,下列判斷何者正確?( 。
A. 兩人皆正確B. 兩人皆錯(cuò)誤
C. 甲正確,乙錯(cuò)誤D. 甲錯(cuò)誤,乙正確
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程。
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)若△ABC的兩邊AB、AC的長(zhǎng)是方程的兩個(gè)實(shí)數(shù)根,第三邊BC的長(zhǎng)為5。當(dāng)△ABC是等腰三角形時(shí),求k的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等腰三角形ABC的三個(gè)頂點(diǎn)都在直徑為10的⊙O上,如果圓心O到BC的距離為3,那么三角形ABC的面積為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,AB=2cm,線段AB與直線l之間的距離為cm,線段CD的起始位置在MN處,此時(shí)∠MAB=1350,現(xiàn)將線段CD在直線l上向右移動(dòng),移動(dòng)速度為1cm/s,運(yùn)動(dòng)時(shí)間為ts.
(1)當(dāng)t=____s時(shí),□ABCD為矩形;
(2)線段CD在直線l上移動(dòng)過(guò)程中,當(dāng)□ABCD為菱形時(shí),求線段CD運(yùn)動(dòng)時(shí)間t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線.
(1)該拋物線的對(duì)稱(chēng)軸是直線___________,頂點(diǎn)坐標(biāo)是___________;
(2)選取適當(dāng)?shù)臄?shù)據(jù)填入下表,并在圖中的直角坐標(biāo)系內(nèi)畫(huà)出該拋物線的圖像;
(3)根據(jù)圖像回答,有實(shí)數(shù)根,此時(shí)的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D為BC的中點(diǎn),若動(dòng)點(diǎn)E以1cm/s的速度從A點(diǎn)出發(fā),沿著A→B→A的方向運(yùn)動(dòng),設(shè)E點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒(0≤t<6),連接DE,當(dāng)△BDE是直角三角形時(shí),t的值為
A、2 B、2.5或3.5 C、3.5或4.5 D、2或3.5或4.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀以下材料:
對(duì)數(shù)的創(chuàng)始人是蘇格蘭數(shù)學(xué)家納皮爾(J.Nplcr,1550﹣1617年),納皮爾發(fā)明對(duì)數(shù)是在指數(shù)書(shū)寫(xiě)方式之前,直到18世紀(jì)瑞士數(shù)學(xué)家歐拉(Evlcr,1707﹣1783年)才發(fā)現(xiàn)指數(shù)與對(duì)數(shù)之間的聯(lián)系.
對(duì)數(shù)的定義:一般地,若(且),那么叫做以為底的對(duì)數(shù),記作,比如指數(shù)式可以轉(zhuǎn)化為對(duì)數(shù)式,對(duì)數(shù)式,可以轉(zhuǎn)化為指數(shù)式.
我們根據(jù)對(duì)數(shù)的定義可得到對(duì)數(shù)的一個(gè)性質(zhì):
(,,,),理由如下:
設(shè),,則,,
∴,由對(duì)數(shù)的定義得
又∵
∴
根據(jù)閱讀材料,解決以下問(wèn)題:
(1)將指數(shù)式轉(zhuǎn)化為對(duì)數(shù)式________;
(2)求證:(,,,)
(3)拓展運(yùn)用:計(jì)算________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com