【題目】如圖,在四邊形ABCD中,∠B=135°,∠C=120°,AB=,BC=,CD=4,則AD邊的長(zhǎng)為_____________.
【答案】2
【解析】
作AE⊥BC,DF⊥BC,構(gòu)建直角△ AEB和直角△DFC,在直角三角形中求出 BE,CF,DF,從而求出EF和DG的值,進(jìn)而求出AD.
解:如圖:過(guò)點(diǎn)A、D分別作AE、DF垂直于直線BC,垂足分別為E、F,
∵∠ABC=135°,
∴∠EBA=45°,
∴BE=AE,
∵AB= ,AB2=BE2+AE2,
∴BE=AE= ,
∵∠BCD=120°,
∴∠FCD=60°,∠CDF=30°
又∵CD=4,
∴CF=2,DF=2 ,
∴EF=EB+BC+CF= =5,
過(guò)點(diǎn)A作AG⊥DF,垂足為G,
∴四邊形AEFG是矩形,
∴GF=AE= ,AG=EF=5,則DG=DF-GF= ,
在RT△AGD中,根據(jù)勾股定理可得AD= .
故本題答案為:2 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某港口位于東西方向的海岸線上.“遠(yuǎn)航”號(hào)、“海天”號(hào)輪船同時(shí)離開(kāi)港口,各自沿一固定方向航行,“遠(yuǎn)航”號(hào)每小時(shí)航行16海里,“海天”號(hào)每小時(shí)航行12海里.它們離開(kāi)港口一個(gè)半小時(shí)后相距30海里.如果知道“遠(yuǎn)航”號(hào)沿東北方向航行,能知道“海天”號(hào)沿哪個(gè)方向航行?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】汽車(chē)油箱中的余油量(升是它行駛的時(shí)間(小 時(shí)) 的一次函數(shù) . 某天該汽車(chē)外出時(shí), 油箱中余油量與行駛時(shí)間的變化關(guān)系如圖:
(1) 根據(jù)圖象, 求油箱中的余油與行駛時(shí)間的函數(shù)關(guān)系 .
(2) 從開(kāi)始算起, 如果汽車(chē)每小時(shí)行駛 40 千米, 當(dāng)油箱中余油 20 升時(shí), 該汽車(chē)行駛了多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(問(wèn)題情境)
如圖1,四邊形ABCD是正方形,M是BC邊上的一點(diǎn),E是CD邊的中點(diǎn),AE平分∠DAM.
(探究展示)
(1)證明:AM=AD+MC;
(2)AM=DE+BM是否成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由.
(拓展延伸)
(3)若四邊形ABCD是長(zhǎng)與寬不相等的矩形,其他條件不變,如圖2,探究展示(1)、(2)中的結(jié)論是否成立?請(qǐng)分別作出判斷,不需要證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法: ① ;②數(shù)軸上的點(diǎn)與實(shí)數(shù)成一一對(duì)應(yīng)關(guān)系;③兩條直線被第三條直線所截,同位角相等;④垂直于同一條直線的兩條直線互相平行;⑤兩個(gè)無(wú)理數(shù)的和還是無(wú)理數(shù);⑥無(wú)理數(shù)都是無(wú)限小數(shù),其中正確的個(gè)數(shù)有 ___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“十一”黃金周期間,歡歡一家隨旅游團(tuán)到某風(fēng)景區(qū)旅游,集體門(mén)票的收費(fèi)標(biāo)準(zhǔn)是: 人以內(nèi)(含 人),每人元;超過(guò)人的,超過(guò)的部分每人元.
()寫(xiě)出應(yīng)收門(mén)票費(fèi)(元)與游覽人數(shù)(人)(其中)之間的關(guān)系式.
()利用()中的關(guān)系式計(jì)算:若歡歡一家所在的旅游團(tuán)共人,那么該旅游團(tuán)購(gòu)門(mén)票共花了多少錢(qián)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD位于平面直角坐標(biāo)系中,A、B在y軸上,且其坐標(biāo)分別為A(0,a)和B(0,-b),D點(diǎn)坐標(biāo)為(-c,a),CD與x軸交于E. 其中a、b、c均為正數(shù),且滿足.
(1)請(qǐng)判斷△ABD的形狀并說(shuō)明理由.
(2)如圖,將圖形沿AM折疊,使D落在x軸上F點(diǎn),若現(xiàn)有一長(zhǎng)度為a的線段,可與線段EF、OF構(gòu)成直角三角形,求a的值.
(3)若P為x軸正半軸上一點(diǎn),且滿足∠APB=45°,請(qǐng)求出P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】填空:如圖,于點(diǎn)D,于點(diǎn)E,,,求的度數(shù).
解:∵,(已知)
∴ ( )
∴( )
∴( )//( )( )
∴( )( )
∵( )
∴( )
∴( )//( )( )
∴( )
∵( )
∴( )=( )(等式性質(zhì))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過(guò)A(﹣1,0)、B(3,0)兩點(diǎn).
(1)求拋物線的解析式和頂點(diǎn)坐標(biāo);
(2)當(dāng)0<x<3時(shí),求y的取值范圍;
(3)點(diǎn)P為拋物線上一點(diǎn),若S△PAB=10,求出此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com