【題目】如圖,已知△ABC是等邊三角形,D是邊AC的中點(diǎn),連接BD,ECBC于點(diǎn)C,CEBD.求證:△ADE是等邊三角形.

【答案】詳見解析.

【解析】

利用△ABC是等邊三角形,D為邊AC的中點(diǎn),求得∠ADB90°,再用SAS證明△CBD≌△ACE,推出AECDAD,∠AEC=∠BDC90°,根據(jù)直角三角形斜邊上中線性質(zhì)求出DEAD,即可得出答案.

證明:∵△ABC是等邊三角形,D為邊AC的中點(diǎn),

BDAC,即∠ADB90°,

ECBC,

∴∠BCE90°,

∴∠DBC+DCB90°,∠ECD+BCD90°,

∴∠ACE=∠DBC

∵在△CBD和△ACE

∴△CBD≌△ACESAS),

CDAE,∠AEC=∠BDC90°,

D為邊AC的中點(diǎn),∠AEC90°,

ADDE,

ADAEDE,

即△ADE是等邊三角形,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人在一條筆直的道路上相向而行甲騎自行車從A地到B,乙駕車從B地到A,他們分別以不同的速度勻速行駛已知甲先出發(fā)6分鐘后,乙才出發(fā)在整個過程中,甲、乙兩人的距離y(千米)與甲出發(fā)的時間x(分)之間的關(guān)系如圖所示,當(dāng)乙到達(dá)終點(diǎn)A,甲還需 分鐘到達(dá)終點(diǎn)B

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C為線段AB上一點(diǎn),△ACD、△CBE都是等邊三角形,AEDC于點(diǎn)MBDCE于點(diǎn)N,下列說法一定正確的是________(請把你認(rèn)為正確答案的序號填在橫線上)

AE=BD;②∠AEC=BDC;③AM=DN;④DM=CN;⑤CM=MN;⑥MNAB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知平行四邊形ABCD,延長ADE,使DE=AD,連接BEDC交于O點(diǎn).

(1)求證:△BOC≌△EOD;

(2)當(dāng)△ABE滿足什么條件時,四邊形BCED是菱形?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊿中,,點(diǎn)分別在 邊上,且, .

⑴.求證:⊿是等腰三角形;

⑵.當(dāng) 時,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“六一”兒童節(jié)前夕,某部隊?wèi)?zhàn)士到福利院慰問兒童.戰(zhàn)士們從營地出發(fā),勻速步行前往文具店選購禮物,停留一段時間后,繼續(xù)按原速步行到達(dá)福利院(營地、文具店、福利院三地依次在同一直線上).到達(dá)后因接到緊急任務(wù),立即按原路勻速跑步返回營地(贈送禮物的時間忽略不計),下列圖象能大致反映戰(zhàn)

士們離營地的距離與時間之間函數(shù)關(guān)系的是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知ABC三個頂點(diǎn)的坐標(biāo)分別是A(2,2),B(4,0),C(4,﹣4).

(1)請在圖中,畫出ABC向左平移6個單位長度后得到的△A1B1C1

(2)以點(diǎn)O為位似中心,將ABC縮小為原來的,得到△A2B2C2,請在圖中y軸右側(cè),畫出△A2B2C2,并求出∠A2C2B2的正弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)C1在邊BC上,將C1CD繞點(diǎn)D順時針旋轉(zhuǎn)90°得到A1AD.A1F平分∠BA1C1,交BD于點(diǎn)F,過點(diǎn)FFEA1C1,垂足為E,當(dāng)A1E=3,C1E=2時,則BD的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某加工廠以每噸3000元的價格購進(jìn)50噸原料進(jìn)行加工.若進(jìn)行粗加工,每噸加工費(fèi)用為600元,需天,每噸售價4000元;若進(jìn)行精加工,每噸加工費(fèi)用為900元,需天,每噸售價4500元.現(xiàn)將這50噸原料全部加工完.設(shè)其中粗加工x噸,獲利y元.

(1)請完成表格并求出yx的函數(shù)關(guān)系式(不要求寫自變量的范圍);

(2)如果必須在20天內(nèi)完成,如何安排生產(chǎn)才能獲得最大利潤,最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案