【題目】函數(shù)yx24x+3

1)求其圖象與x軸交點AB的坐標(AB左邊);

2)在坐標系中畫出函數(shù)圖象;

3)若函數(shù)圖形的頂點為C,求△ABC的面積.

【答案】(1)點A的坐標為(10),點B的坐標為(30);(2)詳見解析;(31

【解析】

1)根據(jù)題目中的函數(shù)解析式可以求得點A和點B的坐標;

2)根據(jù)函數(shù)解析式可以求得該函數(shù)的頂點坐標,從而可以畫出相應(yīng)的函數(shù)圖象;

3)根據(jù)點A、B、C的坐標可以求得△ABC的面積.

解:(1yx24x+3=(x1)(x3),

y0時,x11,x23

A的坐標為(1,0),點B的坐標為(3,0);

2yx24x+3=(x221

該拋物線的頂點坐標為(2,﹣1),

該函數(shù)的圖象有右圖所示;

3)由(2)知頂點C的坐標為(2,﹣1),

A的坐標為(1,0),點B的坐標為(3,0),

AB2,

∴△ABC的面積是:AB×h=1

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】沙坪壩正在創(chuàng)建全國文明城市,其中垃圾分類是一項重要的舉措.現(xiàn)隨機抽查了沙區(qū)部分小區(qū)住戶12月份某周內(nèi)“垃圾分類”的實施情況,并繪制成了以下兩幅不完整的統(tǒng)計圖,圖中表示實施天數(shù)小于5天,表示實施天數(shù)等于5天,表示實施天數(shù)等于6天,表示實施天數(shù)等于7天.

1)求被抽查的總戶數(shù);

2)補全條形統(tǒng)計圖;

3)求扇形統(tǒng)計圖中的圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小區(qū)要用籬笆圍成一個四邊形花壇、花壇的一邊利用足夠長的墻,另三邊所用的籬笆之和恰好為18米.圍成的花壇是如圖所示的四邊形ABCD,其中∠ABC=∠BCD=90°,且BC=2AB.設(shè)AB邊的長為x米.四邊形ABCD面積為S平方米.

(1)請直接寫出Sx之間的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍).

(2)當x是多少時,四邊形ABCD面積S最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著生活水平的提高,人們越來越注重營養(yǎng)健康,有一種有機水果在市場上特別受歡迎,某大型超市以10/千克的價格在產(chǎn)地收購了6000千克水果,立即將其冷藏,請根據(jù)下列信息解決問題:

①水果的市場價每天每千克上漲0.1元;

②平均每天有10千克的該水果損壞,不能出售;

③每天的冷藏費用為300元;

④該水果最多保存110天;

1)若將這批水果存放天后一次性出售,則天后這批水果的銷售單價為 元;

2)將這批水果存放多少天后一次性出售所得利潤為9600元?

3)將這批水果存放多少天后一次性出售可獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線AB與拋物線Cyax2+2x+c相交于點A(1,0)和點B(2,3)兩點.

(1)求拋物線C函數(shù)表達式;

(2)若點M是位于直線AB上方拋物線上的一動點,當的面積最大時,求此時的面積S及點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知四邊形ABCD為菱形,點EF、GH分別為各邊中點,判斷E、F、G、H四點是否在同一個圓上,如果在同一圓上,找到圓心,并證明四點共圓;如果不在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以△ABC的三條邊為邊,分別向外作正方形,連接EF,GH,DJ,如果△ABC的面積為8,則圖中陰影部分的面積為(

A.28B.24C.20D.16

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,AC6BC8,則ABC的外心和內(nèi)心之間的距離為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是長為10m,傾斜角為30°的自動扶梯,平臺BD與大樓CE垂直,且與扶梯AB的長度相等,在B處測得大樓頂部C的仰角為65°,求大樓CE的高度(結(jié)果保留整數(shù)).(參考數(shù)據(jù):sin65°=0.90tan65°=2.14

查看答案和解析>>

同步練習冊答案