【題目】如圖,已知拋物線經(jīng)過原點(diǎn)O,頂點(diǎn)為A(1,1),且與直線交于BC兩點(diǎn).

1)求拋物線的解析式及點(diǎn)C的坐標(biāo);

2)求△ABC的面積;

3)若點(diǎn)Nx軸上的一個(gè)動(dòng)點(diǎn),過點(diǎn)NMNx軸與拋物線交于點(diǎn)M,則是否存在以O,M,N為頂點(diǎn)的三角形與△ABC相似?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】1y=﹣(x12+1,C(1,﹣3);(23;(3)存在滿足條件的N點(diǎn),其坐標(biāo)為(0)(,0)(10)(5,0)

【解析】

1)可設(shè)頂點(diǎn)式,把原點(diǎn)坐標(biāo)代入可求得拋物線解析式,聯(lián)立直線與拋物線解析式,可求得C點(diǎn)坐標(biāo);

2)設(shè)直線AC的解析式為ykxb,與x軸交于D,得到y2x1,求得BD于是得到結(jié)論;

3)設(shè)出N點(diǎn)坐標(biāo),可表示出M點(diǎn)坐標(biāo),從而可表示出MN、ON的長(zhǎng)度,當(dāng)△MON和△ABC相似時(shí),利用三角形相似的性質(zhì)可得,可求得N點(diǎn)的坐標(biāo).

1頂點(diǎn)坐標(biāo)為(1,1),

設(shè)拋物線解析式為y=ax12+1,又拋物線過原點(diǎn),

∴0=a012+1,解得a=1,拋物線解析式為y=﹣(x12+1

y=x2+2x,聯(lián)立拋物線和直線解析式可得,

解得,∴B2,0),C(﹣1,﹣3);

2)設(shè)直線AC的解析式為y=kx+b,與x軸交于D,

A1,1),C(﹣1,﹣3)的坐標(biāo)代入得,

解得:

∴y=2x1,當(dāng)y=0,即2x1=0,解得:x=,∴D,0),

∴BD=2=,

∴△ABC的面積=SABD+SBCD=××1+××3=3

3)假設(shè)存在滿足條件的點(diǎn)N,設(shè)Nx,0),則Mx,﹣x2+2x),

∴ON=|x|,MN=|x2+2x|,由(2)知,AB=,BC=3

∵M(jìn)N⊥x軸于點(diǎn)N,∴∠ABC=∠MNO=90°,

當(dāng)△ABC△MNO相似時(shí),有,

當(dāng)時(shí),,即|x||x+2|=|x|

當(dāng)x=0時(shí)M、ON不能構(gòu)成三角形,∴x≠0∴|x+2|=,x+2=±,解得x=x=,此時(shí)N點(diǎn)坐標(biāo)為(,0)或(0);

當(dāng)或時(shí),,即|x||x+2|=3|x|

∴|x+2|=3,x+2=±3,解得x=5x=1

此時(shí)N點(diǎn)坐標(biāo)為(﹣1,0)或(50),

綜上可知存在滿足條件的N點(diǎn),其坐標(biāo)為(,0)或(,0)或(﹣1,0)或(5,0).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某小學(xué)學(xué)生較多,為了便于學(xué)生盡快就餐,師生約定:早餐一人一份,一份兩樣,一樣一個(gè),食堂師傅在窗口隨機(jī)發(fā)放(發(fā)放的食品價(jià)格一樣),食堂在某天早餐提供了豬肉包、面包、雞蛋、油餅四樣食品.

(1)按約定,“小李同學(xué)在該天早餐得到兩個(gè)油餅”是 事件;(可能,必然,不可能)

(2)請(qǐng)用列表或樹狀圖的方法,求出小張同學(xué)該天早餐剛好得到豬肉包和油餅的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線yax2+bx+ca≠0)如圖所示,下列結(jié)論:①b24ac0;②a+b+c2;③abc0;④ab+c0,其中正確的有(  )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,點(diǎn)A,B分別在x軸,y軸上,點(diǎn)A的坐標(biāo)為(﹣1,0),∠ABO=30°,線段PQ的端點(diǎn)P從點(diǎn)O出發(fā),沿△OBA的邊按O→B→A→O運(yùn)動(dòng)一周,同時(shí)另一端點(diǎn)Q隨之在x軸的非負(fù)半軸上運(yùn)動(dòng),如果PQ=,那么當(dāng)點(diǎn)P運(yùn)動(dòng)一周時(shí),點(diǎn)Q運(yùn)動(dòng)的總路程為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)的圖象如圖所示,給出下列說(shuō)法:

;②方程的根為;④當(dāng)時(shí),值的增大而增大;⑤當(dāng)時(shí),其中,正確的說(shuō)法有________(請(qǐng)寫出所有正確說(shuō)法的序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABO的直徑點(diǎn)CO上一點(diǎn),∠BAC的平分線ADO于點(diǎn)D,過點(diǎn)DDEACAC的延長(zhǎng)線于點(diǎn)E

(1)求證DEO的切線

(2)如果BAC=60°,AD=4,AC長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知中,,,,,;

(1)請(qǐng)說(shuō)明的理由;

(2)可以經(jīng)過圖形的變換得到,請(qǐng)你描述這個(gè)變換;

(3)的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在正方形ABCD中,E,F(xiàn)分別是邊AD,CD上的點(diǎn),AE=ED,DF=DC,連結(jié)EF并延長(zhǎng)交BC的延長(zhǎng)線于點(diǎn)G,連結(jié)BE.

(1)求證:△ABE∽△DEF.

(2)若正方形的邊長(zhǎng)為4,求BG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】圖中所示的拋物線形拱橋,當(dāng)拱頂離水面4m時(shí),水面寬8m.水面上升3米,水面寬度減少多少?下面給出了解決這個(gè)問題的兩種建系方法.

方法一如圖1,以上升前的水面所在直線與拋物線左側(cè)交點(diǎn)為原點(diǎn),以上升前的水面所在直線為x軸,建立平面直角坐標(biāo)系xOy;

方法二如圖2,以拋物線頂點(diǎn)為原點(diǎn),以拋物線的對(duì)稱軸為y軸,建立平面直角坐標(biāo)系xOy,

查看答案和解析>>

同步練習(xí)冊(cè)答案