我市某工藝廠為迎“五一”,設(shè)計了一款成本為20元/件的工藝品投放市場進行試銷.經(jīng)過調(diào)查,得到如下數(shù)據(jù):

銷售單價(元/件)

……

30

40

50

60

……

每天銷售量(件)

……

500

400

300

200

……

(1)     把上表中x、y的各組對應(yīng)值作為點的坐標(biāo),在下面的平面直角坐標(biāo)系中描出相應(yīng)的點,猜想y與x的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;

(2)當(dāng)銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?最大利潤是多少?(利潤=銷售總價-成本總價)

  (3)當(dāng)?shù)匚飪r部門規(guī)定,該工藝品銷售單價最高不能超過45元/件,那么銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?

 

【答案】

(1)的函數(shù)關(guān)系是一次函數(shù)的關(guān)系,

函數(shù)關(guān)系式為y=-10x+800  (20<x<80)

(2)設(shè)工藝廠試銷該工藝品每天獲得的利潤為L元

  則 L=(x-20)(-10x+800)

=-10(x-50)2+9000

∴當(dāng)銷售單價定為50元時,每天獲得的利潤最大,最大利潤是9000元。

(3)由(2)知當(dāng)x<50時,y隨x的增大而增大,

    ∴當(dāng)x=45時有最大值,

    ∴當(dāng)銷售單價定為45元時,每天獲得的利潤最大

【解析】(1)描點,由圖可猜想y與x是一次函數(shù)關(guān)系,任選兩點求表達式,再驗證猜想的正確性;

(2)利潤=銷售總價-成本總價=單件利潤×銷售量.據(jù)此得表達式,運用性質(zhì)求最值;

(3)根據(jù)自變量的取值范圍結(jié)合函數(shù)圖象解答.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•廣東模擬)我市某工藝廠為配合北京奧運,設(shè)計了一款成本為20元∕件的工藝品投放市場進行試銷.經(jīng)過調(diào)查,得到如下數(shù)據(jù):
銷售單價x(元∕件) 30 40 50 60
每天銷售量y(件) 500 400 300 200
(1)猜想y與x的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;
(2)當(dāng)銷售單價定為多少時,試銷該工藝品每天獲得的利潤最大?最大利潤是多少?
(3)銷售部門規(guī)定該工藝品單價不得超過48元,要想每天獲得8750元利潤,單價應(yīng)定為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

 我市某工藝廠為迎“五一”,設(shè)計了一款成本為20元/件的工藝品投放市場進行試銷.經(jīng)過調(diào)查,得到如下數(shù)據(jù):

銷售單價(元/件)

……

30

40

50

60

……

每天銷售量(件)

……

500

400

300

200

……

(1)     把上表中x、y的各組對應(yīng)值作為點的坐標(biāo),在下面的平面直角坐標(biāo)系中描出相應(yīng)的點,猜想y與x的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;

(2)當(dāng)銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?最大利潤是多少?(利潤=銷售總價-成本總價)

  (3)當(dāng)?shù)匚飪r部門規(guī)定,該工藝品銷售單價最高不能超過45元/件,那么銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

我市某工藝廠為迎“五一”,設(shè)計了一款成本為20元/件的工藝品投放市場進行試銷.經(jīng)過調(diào)查,得到如下數(shù)據(jù):
銷售單價(元/件)
……
30
40
50
60
……
每天銷售量(件)
……
500
400
300
200
……
(1)    把上表中x、y的各組對應(yīng)值作為點的坐標(biāo),在下面的平面直角坐標(biāo)系中描出相應(yīng)的點,猜想y與x的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;

(2)當(dāng)銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?最大利潤是多少?(利潤=銷售總價-成本總價)
(3)當(dāng)?shù)匚飪r部門規(guī)定,該工藝品銷售單價最高不能超過45元/件,那么銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆江蘇省鹽城市解放路學(xué)校中考仿真數(shù)學(xué)卷(帶解析) 題型:解答題

我市某工藝廠為迎“五一”,設(shè)計了一款成本為20元/件的工藝品投放市場進行試銷.經(jīng)過調(diào)查,得到如下數(shù)據(jù):

銷售單價(元/件)
……
30
40
50
60
……
每天銷售量(件)
……
500
400
300
200
……
(1)    把上表中x、y的各組對應(yīng)值作為點的坐標(biāo),在下面的平面直角坐標(biāo)系中描出相應(yīng)的點,猜想y與x的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;

(2)當(dāng)銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?最大利潤是多少?(利潤=銷售總價-成本總價)
(3)當(dāng)?shù)匚飪r部門規(guī)定,該工藝品銷售單價最高不能超過45元/件,那么銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤最大?

查看答案和解析>>

同步練習(xí)冊答案