【題目】如圖,AB CD 相交于點(diǎn) O,∠C=COA,∠D=BOD.求證:ACBD.(補(bǔ)全下面的說(shuō)理過程,并在括號(hào)內(nèi)填上適當(dāng)?shù)睦碛桑?/span>

證明:∵∠C=COA,∠D=BOD(      。

又∠COA=BOD

∴∠C=    

ACBD.(     。

【答案】已知;對(duì)頂角相等;∠D;內(nèi)錯(cuò)角相等,兩直線平行.

【解析】

由對(duì)頂角相等知:∠COA=BOD,又∠C=COA和∠D=BOD,由等量替換可得到∠C=D,進(jìn)而得到內(nèi)錯(cuò)角相等,兩直線平行.

證明:∵∠C = COA,∠D = BOD (已知)

又∠COA = BOD (對(duì)頂角相等)

∴∠C = D

ACBD(內(nèi)錯(cuò)角相等,兩直線平行).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A﹣5,0)、B﹣23)、C﹣1,0

(1)畫出ABC關(guān)于坐標(biāo)原點(diǎn)O成中心對(duì)稱的A1B1C1;

(2)ABC繞坐標(biāo)原點(diǎn)O順時(shí)針旋轉(zhuǎn)90°畫出對(duì)應(yīng)的A′B′C′,

(3)若以A′B′、C′D′為頂點(diǎn)的四邊形為平行四邊形,請(qǐng)直接寫出在第四象限中的D′坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:
在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等, = = ,利用上述結(jié)論可以求解如下題目:
在△ABC中,∠A、∠B、∠C的對(duì)邊分別為a,b,c.若∠A=45°,∠B=30°,a=6,求b.
解:在△ABC中,∵ = ∴b= = = =3
理解應(yīng)用:
如圖,甲船以每小時(shí)30 海里的速度向正北方向航行,當(dāng)甲船位于A1處時(shí),乙船位于甲船的北偏西105°方向的B1處,且乙船從B1處按北偏東15°方向勻速直線航行,當(dāng)甲船航行20分鐘到達(dá)A2時(shí),乙船航行到甲船的北偏西120°方向的B2處,此時(shí)兩船相距10 海里.

(1)判斷△A1A2B2的形狀,并給出證明;
(2)求乙船每小時(shí)航行多少海里?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)坐標(biāo)為,點(diǎn)的坐標(biāo)為

1)求直線的解析式;

2)點(diǎn)是坐標(biāo)軸上的一個(gè)點(diǎn),若為直角邊構(gòu)造直角三角形,請(qǐng)求出滿足條件的所有點(diǎn)的坐標(biāo);

3)如圖 2,以點(diǎn)為直角頂點(diǎn)作,射線軸的負(fù)半軸與點(diǎn),射線軸的負(fù)半軸與點(diǎn),當(dāng)繞點(diǎn)旋轉(zhuǎn)時(shí),的值是否發(fā)生變化?若不變,直接寫出它的值;若變化,直接寫出它的變化范圍(不要解題過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商店元月1日舉行元旦促銷優(yōu)惠活動(dòng),當(dāng)天到該商店購(gòu)買商品有兩種方案,方案一:用元購(gòu)買會(huì)員卡成為會(huì)員后,憑會(huì)員卡購(gòu)買商店內(nèi)任何商品,一律按商品價(jià)格的折優(yōu)惠;方案二:若不購(gòu)買會(huì)員卡,則購(gòu)買商店內(nèi)任何商品一律按商品價(jià)格的折優(yōu)惠.已知小敏不是該商店的會(huì)員.

(1)若小敏不購(gòu)買會(huì)員卡,所購(gòu)買商品的價(jià)格為元時(shí),實(shí)際應(yīng)支付多少元?

(2)請(qǐng)幫小敏算一算,她購(gòu)買商品的價(jià)格為多少元時(shí),兩個(gè)方案所付金額相同?

(3)在這個(gè)商店中購(gòu)買商品時(shí),應(yīng)如何選擇購(gòu)買方案劃算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2﹣2ax+c(a≠0)交x軸于A,B兩點(diǎn),A點(diǎn)坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,4),以O(shè)C、OA為邊作矩形OADC交拋物線于點(diǎn)G.

(1)求拋物線的解析式;
(2)拋物線的對(duì)稱軸l在邊OA(不包括O、A兩點(diǎn))上平行移動(dòng),分別交x軸于點(diǎn)E,交CD于點(diǎn)F,交AC于點(diǎn)M,交拋物線于點(diǎn)P,若點(diǎn)M的橫坐標(biāo)為m,請(qǐng)用含m的代數(shù)式表示PM的長(zhǎng);
(3)在(2)的條件下,連結(jié)PC,則在CD上方的拋物線部分是否存在這樣的點(diǎn)P,使得以P、C、F為頂點(diǎn)的三角形和△AEM相似?若存在,求出此時(shí)m的值,并直接判斷△PCM的形狀;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一副三角板按如圖所示疊放在一起,若固定,繞著公共頂點(diǎn),按順時(shí)針方向旋轉(zhuǎn),當(dāng)的一邊與的某一邊平行時(shí),相應(yīng)的旋轉(zhuǎn)角的度數(shù)為_________________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了貫徹落實(shí)國(guó)家關(guān)于增強(qiáng)青少年體質(zhì)的計(jì)劃,鄂州市全面實(shí)施了義務(wù)教育學(xué)段中小學(xué)學(xué)生“飲用奶計(jì)劃”的營(yíng)養(yǎng)工程.某牛奶供應(yīng)商擬提供A(原味)、B(草莓味)、C(核桃味)、D(菠蘿味)、E(香橙味)等五種口味的學(xué)生奶供學(xué)生選擇(所有學(xué)生奶盒形狀、大小相同),為了解對(duì)學(xué)生奶口味的喜好情況,某初級(jí)中學(xué)七年級(jí)(1)班李老師對(duì)全班同學(xué)進(jìn)行了調(diào)查統(tǒng)計(jì),制成了如圖兩幅不完整的統(tǒng)計(jì)圖.

(1)該班五種口味的學(xué)生奶的喜好人數(shù)組成一組統(tǒng)計(jì)數(shù)據(jù),直接寫出這組數(shù)據(jù)的平均數(shù),并將折線統(tǒng)計(jì)圖補(bǔ)充完整.
(2)在進(jìn)行調(diào)查統(tǒng)計(jì)的第二天,李老師為班上每位同學(xué)發(fā)放一盒學(xué)生奶.喜好A味的小聰和喜好B味的小明等四位同學(xué)最后領(lǐng)取,剩余的學(xué)生奶放在同一紙箱里,分別有A味2盒,B味和C味各1盒,李老師從該紙箱里隨機(jī)取出兩盒學(xué)生奶.請(qǐng)你用列表法或畫樹狀圖的方法,求出這兩盒牛奶恰好同時(shí)是小聰和小明喜好的學(xué)生奶的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】記面積為18cm2的平行四邊形的一條邊長(zhǎng)為xcm),這條邊上的高線長(zhǎng)為ycm).

1)寫出y關(guān)于x的函數(shù)表達(dá)式及自變量x的取值范圍;

2)在如圖直角坐標(biāo)系中,用描點(diǎn)法畫出所求函數(shù)圖象;

3)若平行四邊形的一邊長(zhǎng)為4cm,一條對(duì)角線長(zhǎng)為cm,請(qǐng)直接寫出此平行四邊形的周長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案