四個(gè)半徑均為r的圓如圖放置,相鄰兩圓交點(diǎn)之間的距離也等于r,不相鄰兩圓圓周上兩點(diǎn)間的最短距離等于2,則r等于______,圖中陰影部分面積等于______.(精確到0.01)
根據(jù)相交兩圓的連心線垂直平分兩圓的公共弦.
得相鄰兩圓的圓心距是
3
r,
根據(jù)題意,得四個(gè)圓心組成的圖形是正方形,
則有
2
×
3
r=2r+2,r=
6
+2;
∵相鄰兩圓交點(diǎn)之間的距離也等于r,
∴△OAB是等邊三角形,
∴兩個(gè)相鄰圓的公共部分的面積為:
2(S扇形OAB-S△OAB)=
8+4
6
3
π
-4
3
-6
2

陰影部分的面積即正方形的面積減去一個(gè)圓的面積再加上兩個(gè)相鄰圓的公共部分的面積,即約為4.37;
故答案為
6
+2,4.37.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,A(0、6)、B(2
3
、2),BC⊥x軸于C,直線OB交AC于P.
(1)以O(shè)為圓心,OP為半徑作⊙O,判斷直線AC與⊙O位置關(guān)系.
(2)過(guò)B作BD⊥y軸于D,以O(shè)為圓心作半徑為r的⊙O,半徑r使D在⊙O內(nèi),C在⊙O外,以B為圓心作⊙B,半徑R,且⊙O和⊙B相切,求R、r范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在梯形ABCD中,ABDC.
①若∠A=90°,AB+CD=BC,則以AD為直徑的圓與BC相切;
②若∠A=90°,當(dāng)以AD為直徑的圓與BC相切,則以BC為直徑的圓也與AD相切;
③若以AD為直徑的圓與BC相切,則AB+CD=BC;
④若以AD為直徑的圓與BC相切,則以BC為直徑的圓與AD相切.
以上判斷正確的個(gè)數(shù)有(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,已知PA、PB是⊙O的切線,A、B為切點(diǎn),AC是⊙O的直徑,∠P=40°,則∠BAC的度數(shù)是( 。
A.10°B.20°C.30°D.40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,已知△ABC中,AB=AC,∠ABC=70°,點(diǎn)I是△ABC的內(nèi)心,則∠BIC的度數(shù)為( 。
A.40°B.70°C.110°D.140°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,⊙O1和⊙O2的半徑為1和3,連接O1O2,交⊙O2于點(diǎn)P,O1O2=9,若將⊙O1繞點(diǎn)P按順時(shí)針?lè)较蛐D(zhuǎn)360°,則⊙O1與⊙O2共相切______次.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在直角梯形ABCD中,AD⊥BC,AB⊥AD,AB=10
3
,AD、BC的長(zhǎng)是方程x2-20x+75=0的兩根,那么,以點(diǎn)D為圓心、AD為半徑的圓與以點(diǎn)C為圓心、BC為半徑的圓位置關(guān)系是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在同一平面內(nèi),兩圓的半徑分別為方程(x-1)(x-
2
)=0
的兩個(gè)不同實(shí)數(shù)根,兩圓圓心距為2-
2
,則兩圓的位置關(guān)系是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

將三根直徑為a的圓柱形鋼管用鐵絲捆扎,現(xiàn)設(shè)計(jì)了兩種方案,如圖所示,請(qǐng)你探索,宜采用哪一種方案.

查看答案和解析>>

同步練習(xí)冊(cè)答案