精英家教網(wǎng)已知:如圖AB∥CD,∠1=∠A,∠2=∠C,B、E、D在一條直線上.
求∠AEC的度數(shù).
分析:過(guò)E作EF平行于AB,則EF∥CD,由平行線的性質(zhì)可得∠A=∠AEF=∠1,∠C=∠FEC=∠2,由平角∠BED=180°,即可得∠AEC的度數(shù).
解答:精英家教網(wǎng)解:過(guò)E作EF平行于AB,則EF∥CD,
∵AB∥EF,
∴∠A=∠AEF=∠1,
∵CD∥EF,
∴∠C=∠FEC=∠2,
∵∠BED=180°,
∴∠1+∠AEF+∠FEC+∠2=180°,即∠AEF+∠CEF=
1
2
×180
°=90°.
點(diǎn)評(píng):本題考查了平行線的性質(zhì)及平角的定義,正確作出輔助線是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

5、已知,如圖AB=CD,BC=AD,∠B=23°,則∠D=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、完成下面的證明.
已知:如圖AB=CD,BE=CF,AF=DE.求證:△ABE≌△DCF.

證明:∵AF=DE(已知)
∴AF-EF=DE-EF(
等式性質(zhì)
)即AE=DF
在△ABE和△DCF中
∵AB=CD,BE=CF(
已知

AE=DF(
已證

∴△ABE≌△DCF(
SSS
).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、填寫(xiě)下列推理中的空格
已知:如圖AB∥CD,EC∥FB
求證:∠B+∠C=180°
證明:∵AB∥CD   (已知)
∴∠
BGC
+∠C=180°(兩直線平行,同旁內(nèi)角互補(bǔ))
EC∥FB
(已知)
∴∠B=∠BGC (
兩直線平行,內(nèi)錯(cuò)角相等

∴∠B+∠C=180°(
等量代換

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,如圖AB∥CD,∠1=∠2,EP⊥FP,則以下錯(cuò)誤的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案