【題目】如圖,已知菱形ABCD邊長(zhǎng)為4,,點(diǎn)E從點(diǎn)A出發(fā)沿著AD、DC方向運(yùn)動(dòng),同時(shí)點(diǎn)F從點(diǎn)D出發(fā)以相同的速度沿著DC、CB的方向運(yùn)動(dòng).

如圖1,當(dāng)點(diǎn)EAD上時(shí),連接BE、BF,試探究BEBF的數(shù)量關(guān)系,并證明你的結(jié)論;

的前提下,求EF的最小值和此時(shí)的面積;

當(dāng)點(diǎn)E運(yùn)動(dòng)到DC邊上時(shí),如圖2,連接BE、DF,交點(diǎn)為點(diǎn)M,連接AM,則大小是否變化?請(qǐng)說明理由.

【答案】,證明見解析;的最小值是,;如圖3,當(dāng)點(diǎn)E運(yùn)動(dòng)到DC邊上時(shí),大小不發(fā)生變化,理由見解析.

【解析】

先證明是等邊三角形,再證明,可得結(jié)論;

,易證得是正三角形,繼而可得當(dāng)動(dòng)點(diǎn)E運(yùn)動(dòng)到當(dāng),即EAD的中點(diǎn)時(shí),BE的最小,根據(jù)等邊三角形三線合一的性質(zhì)可得BEEF的長(zhǎng),并求此時(shí)的面積;

同理得:,則可得,所以,則A、B、M、D四點(diǎn)共圓,可得

,

證明:、F的速度相同,且同時(shí)運(yùn)動(dòng),

,

四邊形ABCD是菱形,

,

,

是等邊三角形,

同理也是等邊三角形,

,

中,

,

,

;

得:,

,

,

是等邊三角形,

,

如圖2,當(dāng)動(dòng)點(diǎn)E運(yùn)動(dòng)到,即EAD的中點(diǎn)時(shí),BE的最小,此時(shí)EF最小,

,,

的最小值是,

中,,

,

;

如圖3,當(dāng)點(diǎn)E運(yùn)動(dòng)到DC邊上時(shí),大小不發(fā)生變化,

中,

,

,

,

,

,

,

,

、B、M、D四點(diǎn)共圓,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD的角平分線,,,垂足分別為點(diǎn)E、點(diǎn)F,連接EFAD相交于點(diǎn)O,下列結(jié)論不一定成立的是  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算題
(1)計(jì)算:4sin60°+|3﹣ |﹣( ﹣1+(π﹣2017)0
(2)先化簡(jiǎn),再求值:( ﹣1)÷ ,其中x的值從不等式組 的整數(shù)解中任選一個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以AB為直徑的⊙O交∠BAD的角平分線于C,過C作CD⊥AD于D,交AB的延長(zhǎng)線于E.
(1)求證:直線CD為⊙O的切線;
(2)當(dāng)AB=2BE,且CE= 時(shí),求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,,點(diǎn)P從點(diǎn)D出發(fā)向點(diǎn)A運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)A即停止;同時(shí),點(diǎn)Q從點(diǎn)B出發(fā)向點(diǎn)C運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)C即停止,點(diǎn)P、Q的速度都是,連接PQ、AQ、設(shè)點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間為ts.

當(dāng)t為何值時(shí),四邊形ABQP是矩形;

當(dāng)t為何值時(shí),四邊形AQCP是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】南沙群島是我國(guó)固有領(lǐng)土,現(xiàn)在我南海漁民要在南沙某海島附近進(jìn)行捕魚作業(yè),當(dāng)漁船航行至B處時(shí),測(cè)得該島位于正北方向20(1+ )海里的C處,為了防止某國(guó)海巡警干擾,就請(qǐng)求我A處的漁監(jiān)船前往C處護(hù)航,已知C位于A處的北偏東45°方向上,A位于B的北偏西30°的方向上,求A、C之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在3×3的正方形網(wǎng)格中標(biāo)出了∠1∠2,則∠1+∠2=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,海中一小島有一個(gè)觀測(cè)點(diǎn)A,某天上午觀測(cè)到某漁船在觀測(cè)點(diǎn)A的西南方向上的B處跟蹤魚群由南向北勻速航行.B處距離觀測(cè)點(diǎn)30 海里,若該漁船的速度為每小時(shí)30海里,問該漁船多長(zhǎng)時(shí)間到達(dá)觀測(cè)點(diǎn)A的北偏西60°方向上的C處?(計(jì)算結(jié)果用根號(hào)表示,不取近似值)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙上的每個(gè)小方格都是邊長(zhǎng)為1的正方形,△ABC 的頂點(diǎn)均在格點(diǎn)上,若 B

點(diǎn)的坐標(biāo)為(-4,-2), 按要求回答下列問題:

(1)在圖中建立正確的平面直角坐標(biāo)系;

(2)根據(jù)所建立的坐標(biāo)系,寫出點(diǎn)A和點(diǎn)C的坐標(biāo);

(3)畫出△ABC關(guān)于x軸的對(duì)稱圖形△ABC;

(4)△ABC 的面積為________

查看答案和解析>>

同步練習(xí)冊(cè)答案