【題目】已知RtOAB,OAB90ABO30,斜邊OB4,將RtOAB繞點O順時針旋轉(zhuǎn)60,得到△COD,如圖1,連接BC

1)求BC的長度;

2)如圖2,點M,N同時從點O出發(fā),在△OCB邊上運動,M沿OCB路徑勻速運動,N沿OBC路徑勻速運動,當兩點相遇時運動停止,已知點M的運動速度為1.5個單位/秒,點N的運動速度為1個單位/秒,設運動時間為x秒,△OMN的面積為y,求y關于x的函數(shù)解析式,并直接寫出自變量x的取值范圍.

【答案】(1)4;(2)

【解析】

1)只要證明△OBC是等邊三角形即可.
2)分三種情形討論求解即可解決問題:①當0x時,MOC上運動,NOB上運動,此時過點NNEOC且交OC于點E.②當x4時,MBC上運動,NOB上運動.③當4x4.8時,M、N都在BC上運動,作OGBCG

1)解:∵,

,

2)①當時,作

,

②當時,作

由(1)得,為等邊三角形,

③當時,作

,∴

綜上所述,.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,,邊上一點.

1)當時,直接寫出    

2)如圖1,當,時,連并延長交延長線于,求證:

3)如圖2,連,當時,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,矩形ABCD的邊AB4,BC6.若不改變矩形ABCD的形狀和大小,當矩形頂點Ax軸的正半軸上左右移動時,矩形的另一個頂點D始終在y軸的正半軸上隨之上下移動.

(1)當∠OAD30°時,求點C的坐標;

(2)AD的中點為M,連接OM、MC,當四邊形OMCD的面積為時,求OA的長;

(3)當點A移動到某一位置時,點C到點O的距離有最大值,請直接寫出最大值,并求此時cos∠OAD的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于A2,1),B兩點.

1)求出反比例函數(shù)與一次函數(shù)的表達式;

2)請直接寫出B點的坐標,并指出使反比例函數(shù)值大于一次函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道,三角形的內(nèi)心是三條角平分線的交點,過三角形內(nèi)心的一條直線與兩邊相交,兩交點之間的線段把這個三角形分成兩個圖形.若有一個圖形與原三角形相似,則把這條線段叫做這個三角形的“內(nèi)似線”.

(1)等邊三角形“內(nèi)似線”的條數(shù)為   ;

(2)如圖,ABC中,AB=AC,點D在AC上,且BD=BC=AD,求證:BD是ABC的“內(nèi)似線”;

(3)在RtABC中,C=90°,AC=4,BC=3,E、F分別在邊AC、BC上,且EF是ABC的“內(nèi)似線”,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,sinC,長度為2的線段ED在射線CF上滑動,點B在射線CA上,且BC=5,則△BDE周長的最小值為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題提出

1)如圖1,正方形ABCD的對角線交于點O,△CDE是邊長為6的等邊三角形,則OE之間的距離為 ;

問題探究

2)如圖2,在邊長為6的正方形ABCD中,以CD為直徑作半圓O,點P為弧CD上一動點,求A、P之間的最大距離;

問題解決

3)窯洞是我省陜北農(nóng)村的主要建筑,窯洞賓館更是一道靚麗的風景線,是因為窯洞除了它的堅固性及特有的外在美之外,還具有冬暖夏涼的天然優(yōu)點家住延安農(nóng)村的一對即將參加中考的雙胞胎小寶和小貝兩兄弟,發(fā)現(xiàn)自家的窯洞(如圖3所示)的門窗是由矩形ABCD及弓形AMD組成,AB=2m,BC=3.2m,弓高MN=1.2m(NAD的中點,MNAD),小寶說,門角B到門窗弓形弧AD的最大距離是BM之間的距離.小貝說這不是最大的距離,你認為誰的說法正確?請通過計算求出門角B到門窗弓形弧AD的最大距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學習了正多邊形之后,小馬同學發(fā)現(xiàn)利用對稱、旋轉(zhuǎn)等方法可以計算等分正多邊形面積的方案.

1)請聰明的你將下面圖、圖、圖的等邊三角形分別割成2個、3個、4個全等三角形;

2)如圖,等邊△ABC邊長AB4,點O為它的外心,點M、N分別為邊AB、BC上的動點(不與端點重合),且∠MON120°,若四邊形BMON的面積為s,它的周長記為l,求最小值;

3)如圖,等邊△ABC的邊長AB4,點P為邊CA延長線上一點,點Q為邊AB延長線上一點,點DBC邊中點,且∠PDQ120°,若PAx,請用含x的代數(shù)式表示△BDQ的面積SBDQ

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,E為邊AD的中點,點F在邊CD上,且∠BEF90°,延長EFBC的延長線于點G.

(1)求證:△ABE∽△EGB.

(2)AB4,求CG的長.

查看答案和解析>>

同步練習冊答案